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ABSTRACT
Widespread deployment of Intelligent Infrastructure and the In-
ternet of Things creates vast troves of passively-generated data.
These data enable new ubiquitous computing applications—such
as location-based services—while posing new privacy threats. In
this work, we identify challenges that arise in applying use-based
privacy to passively-generated data, and we develop Ancile, a plat-
form that enforces use-based privacy for applications that consume
this data. We find that Ancile constitutes a functional, performant
platform for deploying privacy-enhancing ubiquitous computing
applications.

CCS CONCEPTS
• Security and privacy → Access control; Information flow
control; Pseudonymity, anonymity and untraceability; • Informa-
tion systems→ Location based services.
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1 INTRODUCTION
The recent proliferation of sensors has created an environment in
which human behaviors are continuously monitored and recorded.
For example, fine-grained location data are generated whenever
a person carries a mobile phone. These passively-generated data—
which are generated without explicit action by the data subject,
and often without the subject’s knowledge or awareness—enable
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many new applications. For example, location data enable smart
buildings that reduce energy consumption by only heating or cool-
ing areas where people are present, health applications that im-
prove fitness by encouraging increased mobility, and productivity
applications that suggest ad-hoc meetings when a quorum of a
collaborative team is present. As is the case for mobile and social
applications, ubiquitous computing applications, which consume
passively-generated data, are often developed by third parties.

Many types of passively-generated data are particularly sensi-
tive. For example, real-time location information could facilitate
stalking or other abuse [65] and presence at particular locations
(e.g., certain clinics or clubs) might be correlated with sensitive at-
tributes (e.g., health conditions or sensitive demographics) [7]. Even
when individual data values are not considered sensitive, aggregate
traces of passively-generated data may be sensitive. For example,
locations traces can be used to identify shopping, fitness, and eating
habits [64]. Location traces have also been used to set insurance
rates [21] and to identify individual users in large, anonymized
databases [31]. To develop a trustworthy platform for ubiquitous
computing applications, it is necessary to provide strong privacy
guarantees for the passively-generated data consumed by those
applications.

Use-based privacy [9, 12, 13, 42], which re-frames privacy as
the prevention of harmful uses, appears well-suited to address
this problem. Use-based privacy associates data with policies that
authorize certain types of data use without permitting unrestricted
access to that data. These policies are typically reactive [9, 32]—
i.e., they describe how restrictions change as data are transformed
and as other events occur. For example, a policy might state that a
smartphone application developed by my car insurance provider
may use my current location to provide roadside assistance but
that aggregate location traces (i.e., logged location data) may not
be used to set insurance rates.

To date, use-based privacy has been implemented only in con-
texts where sensitive data are actively generated, that is where the
data subject is explicitly involved in data generation and collection
(e.g., health records [9] or survey data [8]). In those contexts, data
processing pipelines are known in advance, and there is limited
aggregation of sensitive data values. In this work, we explore how
use-based privacy can be extended to support ubiquitous computing
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applications, which consume passively-generated data. Drawing
on a series of example location-based services, we show that such
applications rely on data-processing pipelines that combine data
from multiple sources in complex and nuanced ways. Capturing
the “right” notion of authorization in these settings requires a num-
ber of advanced features including data- and context-dependent
policies as well as the ability to synthesize new policies for derived
values such as collections. These privacy challenges are identified
in Section 2. While it is possible in principle to encode some of
these policies in existing use-based privacy frameworks such as
Avenance [9], a better approach is to give them a first-class treat-
ment. So this work extends the Avenance language to meet these
challenges. The revised policy language is described in Section 3.

We built Ancile, a system which augments an existing intelligent
infrastructure with enforcement mechanisms for use-based privacy.
Because data are passively-generated, Ancile provides an interface
for principals to authorize data import from a data provider and to
specify policies to be associated with all data about a data subject
received by an application from that data provider. These policies
are specified as regular expressions over an alphabet of commands
that operate on data; a policy will specify how a data value may be
used and how any derived values may be used. Both data subjects
and policy administrators (e.g., regulatory experts or research PIs)
may specify policies. On data ingress into Ancile, each data value is
associated with a policy: the intersection of all policies specified for
data values about the data subject imported from the current data
provider by the current application. Ancile implements a reactive
mechanism that updates the associated policy when a data value is
used and that synthesizes policies for any derived data values. To
support extensible development of location-based services by third
parties, Ancile provides a library of commands that application
developers can use to write programs for handling location data.
Ancile executes these programs on behalf of the applications and
enforces that the data are only processed in compliance with their
associated policies. The system implementation is discussed in
Section 4.

We deployed Ancile for a campus-wide location service and
Android location services. We evaluate its functionality by imple-
menting four example location-based services. We evaluate system
performance through component benchmarks, and we evaluate
system scalability via load testing. This evaluation is described in
Section 5.

Our initial findings suggest that Ancile is both expressive and
scalable. This suggests that use-based privacy is a promising ap-
proach to developing a privacy-enhancing platform for implement-
ing location-based services and other applications that consume
passively-generated data.

2 APPLICATIONS
To identify challenges that arise in applying use-based privacy to
ubiquitous computing applications, we consider four simple ap-
plications. We draw our example applications from the domain
of location-based services because passive generation of location
data is widespread [24, 67], because the privacy risks associated
with location data are well established [7, 33, 64], and because
we believe the challenges that arise in location-based services are
representative of ubiquitous applications more broadly. For each

application, we investigate how location data might be processed
to support application functionality while restricting data use in
accordance with the principle of least privilege. We also identify
key privacy challenges for developing a use-based privacy frame-
work that supports location-based services and other ubiquitous
computing applications.
BookNearMe: This application reserves a meeting room based on
a user’s current location. It looks up a list of currently available
rooms through a calendar service, and it reserves a nearby, available
room.

A key privacy goal for a BookNearMe user is secrecy of their
current, fine-grained location. Since precise location information
is not necessary to locate a nearby room, approximate data can be
used without significantly degrading the quality of service. (The
same observation holds for location-based services that find nearby
points of interest, such as restaurants, ATMs, or shops). So a pro-
gram that returns fuzzed location data to the application (which
would then reserve an appropriate room) would enhance privacy
without precluding utility. The data processing pipeline for this
application is depicted in Figure 1a. A fuzzing function that adds
zero noise would not enhance privacy. So a policy should be able to
specify that location data may be returned to an application only
after it has been fuzzed with a specified fuzz factor.

Privacy Challenge 1: To support parameterized functions, the
Ancile policy language must be able to specify argument-dependent
authorizations.

RoamingOfficeHours: This application is designed for TAs or
professors who wish to hold regular office hours at irregular loca-
tions. It publishes a user’s current location if the user is currently
on campus and the user’s calendar has office hours scheduled for
the current time.

The primary privacy goal for a RoamingOfficeHours user is to
maintain the secrecy of their current location when they are off
campus or are not currently holding office hours. This goal can be
met if data use is context-dependent, that is, location data is only
released if the desired conditions (on campus and during scheduled
office hours) are true. This data processing pipeline is shown in
Figure 1b.

Privacy Challenge 2: In order to specify a context-dependent
policy, the Ancile policy language must be able to express autho-
rizations that depend on the data value and on external state.

GroupStudy: This application helps small groups of users (e.g.,
students or developers) collaborate by enabling impromptu face-to-
face meetings. It maintains a list of group members and periodically
checks whether a quorum of the group is on-site; if so, it notifies
all group members.

The primary privacy goal for GroupStudy users is to keep their
location secret by only releasing a single bit of information: whether
or not a quorum of the group is currently on-site. This goal can be
met if each user’s location is used only to determine whether or not
the user is on site, and if these Boolean values are employed only
to evaluate whether a quorum of the group is present. This data
processing pipeline is depicted in Figure 1c. Note, a function that
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Figure 1: Possible data processing pipelines for privacy-enhancing location-based services.

evaluates a quorum takes many inputs and produces one output;
Ancile must be able to support such aggregation functions.

Privacy Challenge 3: In order to authorize uses that take multiple
different data values as inputs, the Ancile policy language must
be able to authorize aggregation functions, and Ancile must be
able to synthesize derived policies for values output by aggregation
functions.

LocationPredictor: This application is a machine learning service
that predicts the next user location based on that user’s location
trace over time. This application can be used to implement smart
building management, for example, to forecast high or low density
areas and perform temperature adjustment, light adjustment, or
elevator positioning.

A privacy goal for LocationPredictor users would be to prevent
location traces from being leaked or being used for any purpose
other than training or using the prediction model. Before training
the model, the location data must be pre-processed (for example,
eliminating data from non-mobile devices). One possible data pro-
cessing pipeline to achieve this goal is depicted in Figure 1d. Note
that this pipeline combines many individual location values into
a single value (e.g., a list of locations) and then eliminates some
of those values. In theory, this could be treated as an aggregation
function (construct list) followed by a standard, one-input function
(modify the list by filtering out some elements). In practice, however,
policy synthesis for aggregate values does not retain provenance
information, so it would be difficult to correctly synthesize policies.
Consider the case where users put a permissive policy on loca-
tion data collected from their phones (because they want to allow
applications to use their location) but put a restrictive policy on

location data collected from their laptops (in order to minimize the
risk of theft). The full data structure of all location data for each
user would be restrictive (because it was derived from location data
from both the phone and the laptop), but the policy on the filtered
data structure (which only contains data from the phone) should
be more permissive.

Privacy Challenge 4: In order to authorize data processing pipe-
lines that operate on data structures, the Ancile policy language
must support functions that create and operate on data structures,
and Ancile must be able to synthesize derived policies for data
structures and for values derived from data structures.

3 POLICY LANGUAGE
In contrast with traditional access-based approaches—which fo-
cus on limiting data collection—use-based privacy [9, 12, 13, 42]
expresses restrictions on how data may be used by applications.
The approach aligns well with the challenges presented by location
data, which is both useful and sensitive.

Use-based privacy has been found to be need reactive languages
for expressing its policies [9]. A reactive language [32] is one in
which the current restrictions associated with a value may depend
on the derivation history and/or on the history of environmental
events that have occurred. For example, a policy might prohibit
the use of raw location traces—only allowing specified filtering
operations—but might authorize the output of those functions to
be used without restrictions. Or a policy might only permit release
of a user’s current location during work hours.

Avenance [9] is a reactive language designed specifically for
use-based privacy. In Avenance, current use-authorizations are
expressed as triples (I ,E, P ), where I is an invoking principal (an



P ::= C − command

| P1 . P2 − sequential composition

| (P1 + P2) − union

| (P1 & P2) − intersection

| !P − negation

| P∗ − Kleene star

| 0 − no operation

Figure 2: Policy Syntax

application), E is an executable (an action that may be performed),
and P is a purpose (a reason to get the data). The set of possible
use-authorizations forms a finite state automaton; the state of this
privacy automaton changes when events (either environmental
events or data transformations) occur. Authorization decisions are
based on the current state of the privacy automaton.

The Ancile policy language is a variant of Avenance that intro-
duces advanced features that meet the privacy challenges identified
in Section 2. An Ancile policy is a regular expression on set of
commands C (commands take the place of Avenance executables).
Policies are constructed using the grammar defined in Figure 2. For
example:
( en c ryp t . ( ! d e c ryp t ) ∗ . d e c r yp t ) ∗

. ( on_campus . r e t u rn_ t o_app
+ a g g r e g a t e _ t r a c e . compute_home . r e t u rn_ t o_app )

This policy would allow encrypted data to be used in any way
((!decrypt)∗). It would allow plaintext data to be used to deter-
mine whether or not the location is on campus; that Boolean value
may be exfiltrated from Ancile to an application. It would also allow
plaintext data to be aggregated into a location trace, which may be
used to infer the data subject’s home location; that home location
may be exfiltrated from Ancile and sent to an application.

There are two classes of commands:
(1) Transformations are commands that take data as input and

generate derived data. Ancile policies specify whether a
transformation is authorized and, if so, what policy to asso-
ciate with the derived data.

(2) Uses are commands that take a single data value as input
and return none. Ancile policies specify whether a use is
authorized and, if so, how to modify the policy on the input
value when the use occurs.

Ancile has a pre-defined set of transformations T and uses
U . The current implementation supports a variety of transfor-
mations that process data in different ways (e.g., encrypt, decrypt,
on_campus, aggregate_trace, compute_home). The command
return_to_app, which (as a side-effect) exfiltrates the data value
from Ancile to the application, is an example of a use. For conve-
nience, Ancile also allows a policy to use the notation ANYF for
authorizing any single command.

Ancile policies specify which commands are authorized to take
a particular data value (e.g., a location or a location trace) as input.
For most commands c , a policy P authorizes c if there exists a string

S with prefix c such that S ∈ L (P ) (where L (R) denotes the set of
strings generated by the regular expression R). A command that
sends a data value to the application (e.g., return_to_app) is only
authorized if the string S = c ∈ L (P ).

Ancile policies also specify how to synthesize policies for derived
values and how to update policies on existing values. Transforma-
tions t take an input x and return an output t (x ); if Px is the policy
associated with x , then Ancile associates derived value t (x ) with a
derived policy D (Px , t ), where D (Px , t ) is the Brzozowski deriva-
tive [10] of Px with respect to t . Uses return no values; when an
authorized use u (x ) occurs, Ancile changes the policy on input x to
be the derivative policy D (Px ,u). Intuitively, the derivative policy
D (Px , c ) is defined so that a string of commands S ∈ L (D (Px , c )) if
and only if the string of commands cS ∈ L (Px ). A formal definition
of how derivate policies are constructed is given in Appendix A.

For example, a policy might state that only anonymized versions
of the data may be returned; this policy would be expressed as
anon . r e t u rn_ t o_app

This policy is interpreted as saying that the only command that is
authorized for this data is the command anon and that the derived
value output by this command should be associated with the derived
policy D (anon.return_to_app, anon) = return_to_app.

A slightlymore permissive policymight allow either anonymized
data or particular simple statistics (e.g., a Boolean value indicating
whether a location is within a specified geofence) to be returned to
applications; this policy would be expressed as
( anon+ in_geo f en c e ) . r e t u rn_ t o_app

The derivate policy associated with an anonymized location would
be return_to_app. Likewise, the derivate policy associated with
the Boolean value indicating whether or not this location is inside
the geofence would also be return_to_app.

Similarly, we can think about a negation operation that permits
all the commands except the specified one, for example the follow-
ing policy would authorize any transformations, but would prohibit
sending the data to an application
! r e t u rn_ t o_app

If two policies both apply to a single piece of data, then the
full policy on that data is the intersection of the two policies. For
example, a data subject might state that their raw location data
must be anonymized before it is returned to an application but
that whether or not they are inside the specified geofence may
be shared with an application; however, contractual requirements
might independently impose the restriction that no identifiable data
may be shared with third parties. The policy expressing how this
data may be used would be expressed as the intersection of these
two policies
( anon + in_geo f en c e ) . r e t u rn_ t o_app & anon . r e t u rn_ t o_app

Note that this policy authorizes execution of the command anon,
since it satisfies both component policies; it does not authorize the
command in_geofence.

Finally, a policy might want to allow the same command to be
executed any number of times; this authorization is expressed with
the Kleene operator ∗. For example, the policy
ANYF∗



is associated with public data: it authorizes any sequence of com-
mands to be applied to that data.

Additionally, the define the notation 0 to denote the policy that
authorizes no programs (that is, L (0) = ∅), and we define the
notation 1 to denote the policy that authorizes only the empty
program with no commands (that is, L (1) = {ϵ }).

Instead of explicitly including invokers in a policy, Ancile as-
sociates policies with individual applications. When executing a
program on behalf on an application, any data fetched by that pro-
gram is associated with the policy defined for that data provider-
application pair.

To meet the privacy challenges that arise in applying use-based
privacy to location-based services, the Ancile policy language also
includes four advanced features: argument-dependent commands,
conditions, aggregate transformations, and collections.
Argument-dependent commands: To meet Privacy Challenge 1,
we need to allow a policy to specify not only the command but
also to specify restrictions on arguments to that command. For
example, given a command fuzz that takes three arguments—a
location, a mean, and a standard deviation—and returns a fuzzed
location defined by adding a random value (drawn from the normal
distribution with the specified mean and standard deviation), the
policy might want to authorize only calls to the command fuzz
where the mean is zero and the standard deviation is at least 10.
Accordingly, Ancile policies can place constraints on parameter
values. So, for example, a BookNearMe user might associate the
following policy with their location data:
f u z z ( mean=0 , s td >=10) . r e t u rn_ t o_app

Conditions: In some cases, authorizations depend on context. This
context might be value dependent, for example, a RoamingOffice-
Hours user might want to share their location only if they are
currently on campus. This context might even depend on other
data values. For example, that user might want to share their loca-
tion only if they are currently scheduled to hold office hours. Or this
context might dependent on public system state, for example, that
user might want to share their location only if the current time is
during business hours. To express such preferences, Ancile policies
may include conditions. A condition command executes a specified
predicate (e.g., in_geofence_cond). We also introduce auxiliary
commands _test_True and _test_False. So, for example, a user
could enforce that the RoamingOfficeHours app only releases their
location while they are on campus by defining a policy
i n_geo f ence_cond ( geo f ence =GF )
. ( _ t e s t _T r u e . r e t u rn_ t o_app + _ t e s t _ F a l s e . 0 )

Observe that conditions are uses: when the predicate is evaluated,
the policy on the data value x is modified by taking the derivative
with respect to the commands
i n_geo f ence_cond ( geo f ence =GF ) . _ t e s t _T r u e

or
i n_geo f ence_cond ( geo f ence =GF ) . _ t e s t _ F a l s e

depending on whether the predicate in_geofence_cond evaluates
to True or False. Like the use return_to_app, conditions have a
side effect: they exfiltrate a value from Ancile and send it to the
application. However, instead of sending the input value, conditions
send the Boolean value the predicate evaluates to.

Aggregate Transformations: To support functions that take mul-
tiple arguments, we introduce aggregate transformations, which
combine multiple data values x1, . . . ,xn into a single data value
f (x1, . . . ,xn ). The policy associated with the new value is the inter-
section of the policies defined by taking the policy associated with
each input value and computing the derivative policy with respect
to the command f . More precisely, if values x1, . . . ,xn have policies
P1, . . . , Pn respectively, then the aggregate value f (x1, . . . ,xn ) will
be associated with the policy D (P1, f )& . . .&D (Pn , f ).

For example, if Alice and Bob form a two-member study group,
and Alice associates policy

i n _g eo f en c e . eva lua te_quorum . r e t u rn_ t o_app

with her location data, and Bob associates the policy

i n _g eo f en c e . eva lua te_quorum . ANYF∗ . r e t u rn_ t o_app

with his location data, then the application will invoke command
in_geofence on each of their location values, producing two Boolean
values with respective derivative policies. Ancile will then perform
the aggregate transformation evaluate_quorum on the two values,
generating a single Boolean value with the policy:

r e t u rn_ t o_app &(ANYF∗ . r e t u rn_ t o_app )

As the policy allows calls to return_to_app, the resulting value
will then be returned to the GroupStudy application, which will
notify both Alice and Bob if a quorum is present (i.e., if they are
both on-site).
Collections: We define aCollection class that stores multiple data
values with individual policies. A collection is a policy-protected
data structure, with the policy defined as the intersection of the
policies associated with the data values in the collection, similar
to aggregate. But in contrast to a aggregate values, Ancile also
tracks the individual policies of each data value in a Collection. This
allows Ancile to support operations that remove elements from a
collection (and synthesize a precise policy for the smaller collection)
and to support operations that extract a single element from the
collection (and admit policies that maintain the invariant that if
value is added to a collection and then removed from the collection,
the final policy associated with that value is the same as the initial
policy associated with that value).

To support this functionality, we introduce a pair of transforma-
tions: add_to_collection and remove_from_collection.
add_to_collection takes as arguments a collection and one or
more additional values, and it returns a new collection containing
all the values. remove_from_collection takes a collection and an
index, and it returns the value at that index.

Other commands also take collections as inputs. We consider
three classes of transformations that operate on collections—filter,
map, and reduce—where elements of each class behave in the nat-
ural ways. Map and reduce functions are treated like any other
transformation: the command is authorized on the collection only
if it is authorized on all values in the collection. Filter functions
are handled differently. All filter functions are considered to be
implementations of the command filter. To authorize the filter
command, a policy must specify the derivative policy for two dif-
ferent cases: filter_keep (defined as filter functions that retain
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this datapoint in the output collection) and filter_remove (de-
fined as filter functions that remove this datapoint from the output
collection). For example, a datapoint might have a policy
a d d _ t o _ c o l l e c t i o n
. ( a d d _ t o _ c o l l e c t i o n + f i l t e r _ k e e p ) ∗
. ( ( ave rage +min ) . r e t u rn_ t o_app + f i l t e r _ r emo v e . ANYF∗ )

This policy allows the datapoint to be added to a collection, and it
allows other datapoints to be added to the collection afterward. For
collections that contain this datapoint, the functions average and
min may be computed on that collection (and the resulting outputs
returned), but no other functions (other than filter functions and
adding other datapoints) may be applied to the collection. After
this datapoint is removed from the collection, this policy imposes
no further restrictions on how the collection may be used.

4 IMPLEMENTATION
Ancile is designed as a run-time monitor positioned between ubiq-
uitous computing applications and passively-generated data (e.g.,
location data). Applications submit requests to Ancile; each request
contains a program to be executed in Ancile’s trusted environment
along with credentials to authenticate the application to Ancile.
Ancile fetches data from a data provider, executes the program, and
sends output data to the application if and only if all commands in
the program are authorized.

4.1 Trust Assumptions
We assume user locations are collected and stored externally by
a third-party data provider, such as an indoor location tracking
service. Users have access to their data stored by a data provider;
users may also authorize principals, such as Ancile, to access their
data (e.g., using OAuth2).

Our adversaries are applications that consume data to provide
some service (e.g., to book rooms near a user); these applications
might attempt to perform unauthorized commands on data. We
assume that applications do not actively try to find and exploit
vulnerabilities in system code, and we assume that applications do
not try to perform denial of service attacks.

Ancile is a trusted principal. We assume that users trust Ancile
with full access to their data. In particular, users trust Ancile to only
invoke commands on behalf of an application if those commands are
authorized, and to only send data to an application if that release
is authorized. We envision two possible ways in which Ancile

might be deployed: it might be operated as a trusted third party, or
companies might deploy an internal version of Ancile to prevent
accidental misuse of data.

4.2 Ancile Overview
Ancile is comprised of three modules. AncileWeb implements a
web interface for specifying privacy policies and integrating data
providers. AncileLib provides a library of privileged commands that
applications use to implement programs. AncileCore executes pro-
grams on behalf of applications while enforcing policy compliance.
The mechanisms of AncileCore ensure that programs cannot violate
a user’s policy. An overview of the system in shown in Figure 3.

We implemented Ancile in Python 3.7 using the Django web
framework [16] to process application requests, control access to
data sources, and perform user management. Ancile utilizes the
PostgreSQL v11 database [48] to store account credentials and Redis
v4.0 [52] to enable in-memory caching of user data and requests.
We run Ancile with the Gunicorn WSGI server [20] and use NGINX
as a reverse proxy.

4.3 AncileWeb
A user first creates an account on Ancile, via the AncileWeb inter-
face. During data provider registration, the user links their account
to an external data provider (e.g., a location server) by authenti-
cating to those services. AncileWeb stores delegated authorization
credentials (e.g., OAuth2 tokens) on behalf of the user.

SinceAncile is designed to support use-based privacy for passively-
generated data, it needs a mechanism for policies to get associated
with that data. AncileWeb provides an interface for users to specify
policies that will apply to all data imported from a data provider;
to distinguish between different applications, the user is allowed to
specify one policy per data provider-application pair. Each policy
specifies which sequences of commands that application is autho-
rized to invoke on any data imported from that data provider. Note,
that this implies that all values about one user fetched from one
data provider by one application will have the same policy. If a user
wants to express different authorizations for different values, they
can do so by putting a condition at the beginning of their policy.
For example, to distinguish between historical and current traces
one can define the following policy:
i s _ c u r r e n t _ c ond
. ( _ t e s t _T r u e . ANYF∗ + _ t e s t _ F a l s e . 0 )



If a user wants to distinguish between a single location value
and a location trace, they can to do by putting a transformation at
the beginning. E.g.,
c r e a t e _ t r a c e . 0 + ! c r e a t e _ t r a c e . r e t u rn_ t o_app

Currently, policies are defined manually using the syntax de-
scribed in Section 3. However, in the future, we envision users
choosing from a small number of predefined policies created by a
policy administrator. Ancile policy administrators are also autho-
rized to add policies for any Ancile user or for groups of Ancile
users. If no policy is defined for a data provider-application pair,
Ancile prohibits all uses of that data by that application.

Since Ancile policies authorize data use for specific applications,
Ancile must be able to authenticate applications. Applications regis-
ter with Ancile through AncileWeb. Once approved, they receive a
JSON Web Token (JWT) [29] that will authenticate them to Ancile.

4.4 AncileLib
Policies are specified as regular expressions over commands; An-
cileLib provides implementations of those commands organized as
Python modules; there is a module for each data provider registered
with Ancile. We chose the Python language because it is one of the
most common programming languages [50], thereby allowing us
to support a wide range of applications.

AncileLib commands may be called by application programs,
and the commands are then executed by Ancile on behalf of the
application. Each call to an AncileLib command interrupts program
execution and invokes AncileCore, a reference monitor that en-
forces policy compliance before allowing the command to proceed.
Reference monitor hooks are implemented with Python decorators.

AncileLib commands have four different types. Three types were
introduced in Section 3: transformations (both basic transforma-
tions and aggregate transformations), conditions (which are uses),
and returns (which are also uses). A fourth type of of command,
called an external command, imports data from a data provider
into Ancile. Each type of AncileLib command operates slightly
differently.

(1) Transformation commands take one or more data values as
input and return a single derived value as output. A transfor-
mation command should only be executed if it is authorized
by the policy associated with the input values, so transforma-
tion commands include a reference monitor hook—the dec-
orator @transform—that invokes the AncileCore reference
monitor to check for policy compliance before the command
is executed. In a transformation command, the keyword
return sends a data value to the AncileCore monitor that
will synthesize a policy for that value. An example transfor-
mation command is given in Figure 4a.

(2) Condition commands take a data value as input and evaluate
some predicate. Conditions are a type of use, which means
that they should only be performed if authorized. Moreover,
calling a condition command might modify the policy asso-
ciated with the input value, so a call to a condition command
includes the decorator @condition_use, which invokes An-
cileCore. AncileCore also updates the policy associated with
the input data value. In a condition, the keyword return
invokes the AncileCore monitor, which will exfiltrate the

Boolean value (the output of the predicate) to the program.
An example condition command is given in Figure 4b.

(3) Return commands are uses with a side effect: they send the
input value to an application. A return command should be
executed only if authorized, so return commands include a
reference monitor hook—the decorator @return_use—that
invokes the AncileCore reference monitor. AncileCore also
updates the policy associated with the input data value. In
a return command, the keyword return sends that value
to the AncileCore monitor, which will exfiltrate that value
to the application. An example return command is given in
Figure 4c.

(4) External commands receive access tokens from AncileWeb
and request data from a data provider. In theory, use-based
privacy policies only restrict how data may be used, so An-
cile should be allowed to request any data value from any
data provider at any time. In practice, however, it is often
more convenient to request many data values at the same
time (e.g., all data matching a particular query), implicitly
aggregating those values together into a single value (e.g.,
a list). Since user and policy administrators might or might
not want to authorize this implicit transformation, external
commands include a reference monitor hook—the decorator
@external—that invokes the AncileCore reference monitor
to check for policy compliance before the command is exe-
cuted. In an external command, the keyword return sends a
data value to the AncileCore monitor which will synthesize
a policy for that data value. An example external command
is given in Figure 4d.

Applications use AncileLib commands to write programs that
operate on passively-generated data. Applications may implement
any program, and these programs may call any command. How-
ever, these programs will be executed by Ancile—and successfully
complete—only if the sequence of commands called by the applica-
tion is authorized for that application. A sample program is given
below:

da t a = f e t c h _ d a t a ( u r l =URL , u s e r = use r 1 )
da t a = f u z z _ l o c a t i o n ( data , mean=0 , s t d =10 )
r e t u rn_ t o_app ( da t a )

4.5 AncileCore
AncileCore is Ancile’s reference monitor: it receives and executes
programs on behalf of applications while enforcing data use restric-
tions.

Applications primarily communicate with Ancile by making
requests for data. When an application requires data from Ancile,
it sends a request with the following elements:

(1) Application Token: This secret is used to authenticate the
application to Ancile.

(2) Users: The users that the application is requesting data for.
(3) Program: A piece of computation to be executed within An-

cile and whose result, if policy compliant, will be returned
to the application.



@transform
de f f u z z _ l o c a t i o n ( data , mean , s t d ) :

impor t numpy as np

da t a [ ' x ' ] += np . random . normal ( mean , s t d )
da t a [ ' y ' ] += np . random . normal ( mean , s t d )
r e t u r n da t a

(a) Transformation Command

@condi t ion_use
de f equa l_cond ( data , key , v a l u e ) :

r e t u r n da t a [ key ] == va lue

(b) Condition Command

@return_use
de f r e t u rn_ t o_app ( da t a ) :

impor t j s on
r e t u r n j s on . dumps ( da t a )

(c) Return Command

@externa l
d e f f e t c h _ d a t a ( u r l , u s e r ) :

impor t r e q u e s t s

token = ge t _ t oken ( u s e r )
header = { " Au t ho r i z a t i o n " : " Bea r e r " + token }
r e s u l t = r e q u e s t s . g e t ( u r l , h eade r s =[ header ] )
i f r e s u l t . s t a t u s _ c o d e == 2 0 0 :

r e t u r n r e s u l t . j s on ( )

(d) External Command

Figure 4: Example commands from AncileLib.

When AncileCore receives the request, it communicates with
AncileWeb to authenticate the application. After successful au-
thentication, AncileCore executes that program on behalf of the
application while enforcing policy compliance.

Policy enforcement in Ancile is achieved because AncileCore
extends programs that operate on data values to be programs that
operate on tagged values known as DataPolicyPairs. A DataPolicy-
Pair contains two restricted fields: _data and _policy. To prevent
programs from directly manipulating data or policies, submitted
programs are compiled with RestrictedPython [19] before execution.
RestrictedPython curtails the application’s program to predefined
Ancile commands and prevents access to internal data structures
by transforming the code before compilation and raising errors if
a program attempts to use builtin features, such as class creation
or access protected data fields marked with a leading underscore.
In particular, compilation with RestrictedPython guarantees that
DataPolicyPairs are opaque to the submitted program and, there-
fore, their internal fields (the data value and the policy) can neither
be inspected nor manipulated. Thus, the only way for an applica-
tion’s program to interact with a data value is through AncileLib
commands that invoke the reference monitor hooks.

Policy Tagging. There are two ways to create a new DataPolicy-
Pair in Ancile: importing raw data values from a data provider and
computing derived values with a transformation command.

Raw values are imported from data providers by external com-
mands. External commands that fetch one data value are always
authorized. AncileCore determines (1) which user is the subject
of that value (specified by the request issued by the application),
(2) which application is requesting the data (determined from the
application token in the request issued by the application), and
(3) which data provider acts as the source of the data (determined
from the external command). AncileCore then retrieves the corre-
sponding policy from AncileWeb. To execute an external command,

AncileCore requests the data value from the external data provider
and creates a new DataPolicyPair comprised of the value returned
by the data provider and the policy returned by AncileWeb.

In practice, it is convenient to allow external commands that
fetch multiple data values at the same time (e.g., all data matching
a particular query). From a theoretical perspective, these external
commands are syntactic sugar for a sequence of requests issued
to a data provider (each of which returns a single data value) fol-
lowed by an aggregation transformation, which combines those
values into a single data value. When a multi-value external com-
mand is called, AncileCore interacts with AncileWeb to determine
the set of implied policies Pimp that would be associated with
the imported data values. That is, AncileCore determines which
users the application is requesting data (specified by the request
issued by the application), which application is requesting the data
(determined by the application token in the request issued by the
application), and which data provider acts as the source of the data
(determined by the external command). AncileCore then invokes
its policy enforcement method for transformations (discussed be-
low) to determine whether the implicit aggregation transformation
is authorized. If so, AncileCore issues a fetch request to the data
provider and creates a new DataPolicyPair whose value is the data
returned by the data provider and whose policy is the intersection
of the derivative policies computed by taking each policy in the
set Pimp and computing the derivative with respect to the implicit
aggregation transformation.

Derived values are generated from input DataPolicyPairs when
transformation commands are called. If authorized, Ancile executes
the command, computes the derivative policy of each input, and
then creates a new DataPolicyPair comprised of the data value
returned by the command and the intersection of the derivative
policies for each input (or simply the derivative policy of the one
input, if the transformation command has only one input).



In addition to creating new DataPolicyPairs, AncileCore must
also modify the policy in an existing DataPolicyPair when a use
command is called. For return commands, AncileCore simply re-
places the policy in the DataPolicyPair with the derivative of the
original policy with respect to the return command. For condi-
tions, it evaluates the specified predicate. It then replaces the pol-
icy in the DataPolicyPair with the derivate policy with respect to
<condition>._test_True (if the predicated evaluated to True) or
<condition>._test_False (if the predicate evaluated to False).

Policy Enforcement. In addition to tagging each value with a pol-
icy, AncileCore also enforces those policies. Each time the program
attempts to call a command, AncileCore checks whether that com-
mand is authorized. If a program attempts to call an unauthorized
command, AncileCore immediately stops program execution and
returns an error message to the application.

• An external command is authorized if the implicit transfor-
mation invoked by that command is authorized. External
commands that fetch a single data value are always autho-
rized.
• To determine whether a transformation is authorized, Ancile
checks whether all of the policies in the input DataPolicy-
Pairs accept some string whose prefix is the transformation
command.
• To determine whether a condition command is authorized,
AncileCore checks whether the policy in the input DataPol-
icyPair accepts some string whose prefix is that condition
command.
• To determine whether a return command r is authorized,
AncileCore checks whether the single-character string r is
accepted by the policy in the input DataPolicyPair.

Each of these checks is performed by executing syntactic operations
D-step and E-step, which are formally described in Appendix A.

5 EVALUATION
To demonstrate functionality (and to demonstrate that Ancile suc-
cessfully addresses the identified privacy challenges), we imple-
mented the four location-based services described in Section 2.
BookNearMe, RoamingOfficeHours, and GroupStudy are built as
Slackbot applications (Section 5.1), and LocationPredictor is real-
ized using several different machine learning pipelines (Section 5.2).
We also performed a series of benchmarks to evaluate the overhead
incurred by running applications on top of Ancile (Section 5.3).

To provide these sample applications with location data, we
developed two standalone location servers: one indoor and one out-
door. The indoor location tracking uses a campus-wide deployment
of the ArubaWiFi system with enabled positioning service [57] that
our server queries every 30 seconds; the outdoor location server
fetches data through a companion Android application using An-
droid’s location services [4]. Both servers expose OAuth2 protected
endpoints that release location data. Additionally, we tested Ancile
with third-party data providers for non-location data, including
Google and Outlook Calendars.

5.1 Location-Aware Slackbot applications
In our setup, Slackbot applications communicate with the user
through the Slack API and can only access users’ data through An-
cile. The privacy policies shown below are constructed by the policy
administrator. These policies do not block the applications’ main
functionality, but they enhance privacy by restricting unnecessary
uses.
BookNearMe: Our location server data provider returns the cur-
rent indoor position of the user. Our goal is to prevent the ap-
plication from learning an exact location, but provide a location
sufficient to decide on nearby meeting rooms. The privacy policy
for this application is:

f u z z _ l o c a t i o n ( s td >=10 , mean=0 ) . r e t u rn_ t o_app

This policy authorizes execution of the fuzz_location command
to add Gaussian noise to the indoor position; the reactive nature of
our policies enforces that data cannot be returned to the application
until it has been fuzzed by this command. Note that this policy
only authorizes the fuzz_location command when called with a
standard deviation greater than or equal to ten and a mean of zero.

An Ancile program that would comply with this policy is shown
in Figure 5a. Calling external command fetch_last_location
returns a new DataPolicyPair, dpp, containing the most recent lo-
cation value from the indoor location service and the policy shown
above. Any application wishing to get location data must invoke
the fuzz_location command with appropriate parameters. This
command transforms the location data and returns the fuzzed lo-
cation in a new DataPolicyPair dpp2 associated with the derived
policy return_to_app. The program is then authorized to invoke
the return command return_to_app on dpp2 to send the fuzzed
location back to the application, which can use this data to book a
nearby meeting room on behalf of the user.
RoamingOfficeHours: This application requires access to both
calendar and location data, and the policy protecting location data
is dependent on the calendar data.

For location data, this application uses the outdoor location
server, and it fetches data for the user using the Ancile command
get_last_location. The in_geofence command determines if
the user is in the specified geofence. In this scenario, we want to
release the exact location only when the user is inside the speci-
fied geofence and office hours are occurring. Thus, we define the
following policy on location:

i n_geo f ence_cond ( geo f ence =GF )
. _ t e s t _T r u e
. e v en t _o c cu r r i ng_ cond ( event_name= ' O f f i c e Hours ' ,

c a l e n d a r = ' u s e r 1 ' )
. _ t e s t _T r u e . r e t u rn_ t o_app

Since this application uses calendar data in addition to location
data, users or policy administrators will also need to define a policy
for how calendar data may be used. If users only care about privacy
for location data, they could associate the calendar data provider
with the public policy ANYF∗. Alternatively, if they only want their
calendar to be used to check for office hours, they could associate
the calendar data provider with the restrictive policy:

even t _oc cu r r i ng_cond ( event_name= ' O f f i c e Hours ' ) ∗



dpp = f e t c h _ l a s t _ l o c a t i o n ( u s e r = ' u s e r 1 ' )
dpp2 = f u z z _ l o c a t i o n ( da t a =dpp , s t d =10 , mean=0 )
r e t u rn_ t o_app ( da t a =dpp2 )

(a) BookNearMe

c a l _dp = g e t _ c a l e n d a r _ e v e n t s ( u s e r = ' u s e r 1 ' )
l o c_dp = g e t _ l a s t _ l o c a t i o n ( u s e r = ' u s e r 1 ' )

i f i n_geo f ence_cond ( da t a = loc_dp , geo f ence =GF ) :
i f e v en t _o c cu r r i ng_ cond ( da t a = ca l_dp ,
event_name= ' O f f i c e Hours ' ,
dependent= loc_dp ) :

r e t u rn_ t o_app ( da t a = loc_dp )

(b) RoamingOfficeHours

dp_1 = g e t _ l a s t _ l o c a t i o n ( u s e r = ' u s e r 1 ' )
dp_2 = compute_geofence ( da t a =dp_1 , l a t =0 ,
l on =0 , r a d i u s =10 )
dp_3 = g e t _ l a s t _ l o c a t i o n ( u s e r = ' u s e r 2 ' )
dp_4 = compute_geofence ( da t a =dp_3 , l a t =0 ,
l on =0 , r a d i u s =10 )

dp_aggr = eva lua te_quorum ( da t a =[ dp_2 , dp_4 ] ,
t h r e s h o l d _ p e r c e n t =100 )
r e t u rn_ t o_app ( da t a =dp_aggr )

(c) GroupStudy

c o l l e c t i o n = f e t c h _ l o c a t i o n _ h i s t o r y ( u s e r = ' u s e r 1 ' ,
f r =DATE_FROM , to =DATE_TO)

f i l t e r _ t r a i n = lambda x : x [ ' t imestamp ' ] <= DATE_TEST
t r a i n _ d a t a = f i l t e r ( c o l l e c t i o n , f i l t e r _ t r a i n )
model = t r a i n ( da t a = t r a i n _ d a t a , epochs =10 )

f i l t e r _ t e s t = lambda x : x [ ' t imestamp ' ] > DATE_TEST
t e s t _ d a t a = f i l t e r ( c o l l e c t i o n , f i l t e r _ t e s t )

p r eds = s e r v e ( model=model , d a t a = t e s t _ d a t a )
r e t u rn_ t o_app ( da t a = preds )

(d) LocationPredictor

Figure 5: Ancile programs for example location-based services.

There is no return command in this policy, so calendar data is never
sent directly to the application. Instead, calendar data may only be
used to determine whether office hours are currently scheduled.

A program that implements the core functionality of the Roamin-
gOfficeHours application and that complies with these policies is
given in Figure 5b. The program retrieves both data values and
evaluates the conditionals in sequence. In compliance with the
above policy, the program only returns location data only when
both predicates evaluate to True.
GroupStudy: We implement this application by using aggregation
of multiple datapoints from a predefined group of users. We use the
compute_geofence transformation and the aggregate transforma-
tion evaluate_quorum, which takes a list of datapoints, a threshold,
and a parameter that indicates which users are in the group. The ref-
erence monitor ensures that datapoints given to evaluate_quorum
belong to the users specified in the policy.

compute_geofence ( l a t =0 , l on =0 , r a d i u s =10 )
. eva lua te_quorum ( t h r e s h o l d _ p e r c e n t =100 ,

u s e r s =[ ' u s e r 1 ' , ' u s e r 2 ' ] )
. r e t u rn_ t o_app

A policy-compliant implementation of GroupStudy is given in
Figure 5c.

Although, the above applications are simple, we believe it is
possible to create a more complete library of commands for each
data provider that would support development of a broad range of
location-based services.

5.2 Machine Learning Pipelines
We now consider an application that uses indoor location data
to train and use a location-prediction model. We want to control
how location data are used individually, how aggregate location
traces are used, and how derived machine learning models are used.
Ancile collections facilitate implementation of a privacy-enhancing
version of the LocationPredictor application.

We might consider four possible approaches to developing the
LocationPredictor application with varying levels of privacy pro-
tection for the location data used to train the model:

(1) Release training data to the application. This approach does
not impose any restriction on data. A user who is comfortable
releasing location data to the LocationPredictor application
might define the public policy

ANYF∗

(2) Train the model inside Ancile and release the model to the
application. Even if a user is unwilling to release raw location
data to an application, that user might be willing to allow the
application to receive a machine learning model trained on
location data. Such a user might define the following policy:
a d d _ t o _ c o l l e c t i o n . f i l t e r _ k e e p ∗ . t r a i n . r e t u rn_ t o_app

(3) Train the model inside Ancile and release predictions to the
application. Existing attacks can perform membership infer-
ence on training data and even extract data [6], so some users
might not want to release a model (trained on their location
data) to an application. However, those users might allow
Ancile to train a model on location data and to use current
data to predict locations. This policy would be expressed as:



a d d _ t o _ c o l l e c t i o n . f i l t e r _ k e e p ∗
. ( t r a i n . s e r v e . r e t u rn_ t o_app
+mos t_ recen t_cond . _ t e s t _T r u e . s e r v e

. r e t u rn_ t o_app )

(4) Train the model using a Differentially Private mechanism.
There exist model inference attacks that learn a model given
only black-box access to the model, so some users might not
be comfortable releasing predictions based on a standard
model trained on their location data. Such users might re-
quire that the model be trained using a differentially-private
mechanism that ensures privacy of individual data values [1,
40]. The following policy enforces this case:
a d d _ t o _ c o l l e c t i o n . f i l t e r _ k e e p ∗ . t r a i n _ dp ( eps <10 )

. r e t u rn_ t o_app

We implemented variants of the LocationPredictor application
that satisfy each of the four proposed policies described above. We
use one of the authors’ location trace containing three months of lo-
cation data collected by our indoor location server (a campus-wide
deployment of the Aruba WiFi system with enabled positioning
services). The location trace contains 29K datapoints that repre-
sent 118 distinct locations. Using this data, our implementations
of LocationPredictor built a model that predicts the next location
given the 20 most recent locations. The model shares structure and
hyperparameters with the next-word prediction example from the
PyTorch repository [51]. We implemented the normal training of
the model as an AncileLib command train and use DP-SGD [40]
for train_dp. The normal training in cases (1), (2), and (3) achieves
85% accuracy on test data. Training a model in case (4) achieves 75%
accuracy and represents a (ϵ = 2.11, δ = 10−6)-DP mechanism (sin-
gle digit ϵ values provide acceptable guarantees [1]). The program
that satisfies the policy (3) is given in Figure 5d.
Encryption. To support applications that want to use the same
model during multiple requests, Ancile allows encrypted copies of
the model to be returned to the application. Encrypted copies can
be sent back to Ancile with future requests. This enables a model
trained during one request to be used on new location values in a
subsequent request.
Third-party libraries. As in the example above, a policy might
require complex transformations to be performed on data, such
as computing certain statistics using data science tools, that are
expensive to re-implement as AncileLib commands. Ancile can
treat methods from trusted third-party libraries (e.g. NumPy [45]
or PyTorch) as transformation commands, hence library methods
can accept DataPolicyPairs as arguments and advance the corre-
sponding policies.

5.3 System Performance
The inclusion of Ancile between applications and data sources adds
a layer of indirection that impacts when applications receive data.
The latency of requests to Ancile varies greatly, depending on the
executed program and the latency of data providers. In many cases,
much of the computation done by Ancile—such as calculating ge-
ofences or training machine learning models—would otherwise fall
to the application; the complexity of these computations cannot
be controlled by Ancile. Similarly, the latency from data providers

is unpredictable, often exceeding several seconds, and equally un-
avoidable. Thus, we focus onmeasuring the execution time of policy
checks and the time to retrieve policies and user information.

We benchmarked the policy evaluation time for our example
applications. The time to evaluate a single policy ranges between
1 to 15 microseconds based on the complexity of the policy, intro-
ducing negligible overhead. The other source of overhead comes in
fetching the corresponding credentials, compiling programs, and
parsing policies, which on average ranges between 30 to 90 millisec-
onds depending on the number of users and length of submitted
program. However, we cache user credentials, compiled programs,
and parsed policies, which reduces overhead to between 3 to 9
milliseconds for subsequent requests. Compared with the latency
of data sources and command execution time, policy enforcement
in Ancile does not add a significant delay to the overall application
performance.

To test the scalability of our system, we performed concurrent
load testing of Ancile using the wrk2 benchmarking tool [66]. We
tested on a virtual machine running Ubuntu 18.04 with 8Gb of
RAM and 4 Intel(R) Xeon(R) CPU E5-2620 2.1 GHz processors. To
eliminate impact of data source latency, we use static sample data
with simple policy: ANYF and a simple program that fetches the test
data and returns. Without caching, the system can handle up to 200
requests per second. However, with caching enabled, the system
can handle 700 requests per second, with an average response
latency of 428 milliseconds. Given our intended deployment space,
we believe the prototype system is sufficient to support applications
that regularly poll data with the same program that can be cached.
Additionally, applications that use more advanced features such as
ML training will mostly depend on speed of the computation.

6 RELATEDWORK
Ancile extends privacy research that aims to control application
access to users’ sensitive data [12, 26, 27, 34, 35, 47, 54]. So, we
compare our framework with solutions that analyze or control data
usage.
Policy-Based systems: The recently proposedAlmond system [11]
allows users to express policies using natural language which is
later converted into programs that control access to data. Almond
focuses on translating policies, whereas Ancile adds policies to
application programs directly and allows control over data uses.
The privacy-enforcing language Jeeves [68] enables enforcement
of policies that access particular fields in an application’s program.
Instead, Ancile allows a reactive definition of policies that change
once the commands are executed and policies are attached directly
to the data.

The Pilot policy language [46] has a similar integration of a
policy language, but uses static analysis of submitted code, whereas
Ancile policy enforcement is interleaved with the execution of an
application’s program and can change based not only commands
but also on data. While the Houdini project [27] supports context-
aware data sharing, it does not support reactive privacy policies.
Decentralized policy enforcement [30] can be further applied to
Ancile and increase range of supported applications. The Open
Algorithms project [22] proposes a system similar to AncileLib that



contains trusted implementations of data processing, but lacks a
formal policy language to enforce control over data.
Inspection based systems: PrivacyStreams [38], integrates into
the development flow of Android applications. However, it lacks
a policy enforcement component and can only report performed
data usage. The TaintDroid [18] and FlowDroid [5] projects can
infer an application’s usage of sensitive data without access to
source code, but cannot enforce policy restrictions. Similarly, data
inspection projects [23, 37, 49, 61] only track usage but do not
support policy control. On the other hand, ProtectMyPrivacy [2]
allows one to implement access protection on data sources, but
cannot act dynamically and does not impose usage control.
Personal private spaces: Systems such as Databox [41] and open-
PDS [15] implement private storage for sensitive data or a Personal
Data Space [36]. Databox requires applications to run locally, and
openPDS only releases an "answer" to data queries. Instead, Ancile
returns transformed data to external applications outside of the
trusted environment, allowing arbitrary programs and guarantee-
ing data release according to defined policies.
Data Flow Control Systems: Projects focusing on ensuring infor-
mation flow security [43, 53] do not focus on privacy and reactive
policies. Usage Control (UCON) [47] and Privacy Proxy [35] ex-
tend a traditional access-based approach but lack reactive policy
changes. Thoth [17] and Grok [56] operate on the data provider
side and focus on high-performance computing, but do not allow
for the integration of policies inside program execution. Ancile, in
contrast, focuses on deployment within enterprises dealing with
user’s sensitive data and assumes no changes to data provider work
flow. Software Guard Extensions (SGX) [3, 14] provide additional
guarantees for safe execution of programs in untrusted environ-
ments. In our current work, we don’t consider SGX-based policy
enforcement [8, 28, 39, 55] and assume Ancile commands have been
inspected and are run in a trusted environment.
Privacy inubiquitous systems: Sensitive data generated by ubiq-
uitous sensors have been shown to reveal details such as behavioral
patterns [21, 25, 64] and physical presence [62, 69, 70] and can lead
to stalking or disparate treatment [21, 65] and have been extensively
studied [59, 60]. In our experiments, we focus on location data be-
cause it is one of the commonly-used sensors for privacy research
and it has been extensively studied over last two decades [7, 33, 44].
We use common techniques for data filtering and controlled data re-
lease to experiment with potential applications that preserve users’
privacy. More advanced techniques of location obfuscation [58, 63]
are not considered in this paper, but since Ancile supports adding
wide range of commands, it is easy to extend Ancile in this manner.

7 CONCLUSION AND FUTUREWORK
We explored the problem of applying use-based privacy to passively-
generated data. Using location-based services as an example, we
identified privacy challenges that arise in ubiquitous computing
applications, extended the existing Avenance language to address
these challenges, and implemented a framework for enforcing use-
based privacy in ubiquitous computing applications.

This work constitutes the first evidence that use-based privacy
can be leveraged to enhance privacy in ubiquitous computing appli-
cations, but it leaves several open questions. First, we hypothesize

that the privacy-challenges that arise in location-based services are
representative of the challenges that arise in ubiquitous computing
applications more broadly. However, this hypothesis is untested
to date. The extent to which Ancile solves the problem of apply-
ing use-based privacy to the full range of ubiquitous computing
applications is left as future work. Second, we believe it would be
possible to implement a full data-analytics toolkit in AncileLib that
would support a broad range of general-purpose applications that
depend on data from many different data providers. However, the
current implementation is more tailored to the example applications
considered in this work. Future work will be required to confirm
that Ancile can support extensible application development. Third,
Ancile separates policy from code, relieving application developers
of sole responsibility for ensuring that data are only used in com-
pliance with all relevant policies. However, adoption will depend
on the ease with which developers can implement new programs
that run on top of Ancile. Further evaluation will be required to
establish whether Ancile allows non-experts to easily implement
privacy-enhancing ubiquitous computing applications.
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E (0) = 0
E (1) = 1
E (C ) = 0
E (P1 . P2) = E (P1) ∧ E (P2)

E (P1 + P2) = E (P1) ∨ E (P2)

E (P1 & P2) = E (P1) ∧ E (P2)

E (P∗) = 1
E (!P ) = !E (P )

Figure 6: A summary of the syntactic operation E

A FORMALIZING POLICY ENFORCEMENT
Ancile tracks the current policy associated with each piece of data—
including synthesizing policies for derived values and updating
policies as values are used—and ensures that only authorized com-
mands can be executed on data.

To discharge these obligations, we define a syntactic operation
E (P ) that evaluates to a Boolean value indicating whether or not all
data-processing obligations have been discharged. That is, whether
or not the language L (P ) generated by the policy P contains the
empty string ϵ . By definition, L (1) = {ϵ } and L (0) = ∅, so E (1) =
1 and E (0) = 0. A policy defined by a single command P = C
requires that command to be invoked on the data, so E (C ) = 0. The
policy P1.P2 accepts the empty string only if both P1 and P2 do so,
thus E (P1.P2) = E (P1) ∧ E (P2). Union, intersection, and negation
are defined in the natural way. An iterated policy P∗ accepts any
number of iterations of P , including zero (i.e., the empty string ε),
so E (P∗) = 1. A summary of the operation E is given in Figure 6.

We can now formalize how Ancile tracks the policy associated
with each data value. Ancile executes programs (i.e., sequences of
commands) on behalf of applications.When it executes a useu (x ), it
updates the policy associated with the input x to be the Brzozowski
derivative [10] D (Px ,u), where Px is the policy associated with
x before the use u occurs. The formal definition of the derivative
policy D (P ,C ) is given in Figure 7.

If the derivative policy D (P , c ) for a command c evaluates to
the policy 0, that command is unauthorized. Additionally, if the
command is a return command, that command is only authorized
if E (D (P , c )) = 1. Ancile blocks any unauthorized commands and
terminates the program that attempted to execute that command.

Example. Consider the policy P0 = anon.return_to_app asso-
ciated with a data value x , which requires that x must be to de-
identified (anon) before it may be sent to the application
(return_to_app).

When the application submits a program that executes the com-
mand anon followed by the command return_to_app, Ancile sys-
tem will compute the following derivative policy P1 to associate
with the derived data value anon(x ).

D (0,C ) = 0

D (1,C ) = 0

D (C,C ) = 1

D (C,C ′) = 0 (for C , C ′)
D (P1 . P2,C ) = D (P1,C ) . P2 + E (P1) . D (P2,C )

D (P1 + P2,C ) = D (P1,C ) + D (P2,C )

D (P1 & P2,C ) = D (P1,C ) & D (P2,C )

D (P∗,C ) = D (P ,C ) . P∗

D (!P ,C ) = !D (P ,C )

Figure 7: A summary of the syntactic operation D

P1 = D (P0, anon)

= D (anon.return_to_app, anon)

= D (anon, anon).return_to_app

+ E (anon).D (return_to_app, anon)

= 1.anon + 0.D (anon.anon)

= anon + 0

= anon

Observe that the command return_to_app is authorized because
P1 , 0.

When the program executes the second command return_to_app,
Ancile will compute the derivative policy P2 and associate it with
the value anon(v ):

P2 = D (P1, return_to_app)

= D (return_to_app, return_to_app)

= 1

Observe that the command return_to_app is authorized because
P2 , 0 and E (P2) = 1.

Note that we are using the simplification 1.P=P—which holds
because the policy 1 accepts exactly the empty string—the sim-
plification 0.P=0—which holds because the policy 0 rejects all
strings—and the simplification P + 0 = P—which holds because +
denotes union.
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