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Abstract

We revisit the composability of different forms of zero-knowledge proofs when the honest
prover strategy is restricted to be polynomial time (given an appropriate auxiliary input). Our
results are:

1. When restricted to efficient provers, the original Goldwasser–Micali–Rackoff (GMR) def-
inition of zero knowledge (STOC ‘85), here called plain zero knowledge, is closed under
a constant number of sequential compositions (on the same input). This contrasts with
the case of unbounded provers, where Goldreich and Krawczyk (ICALP ‘90, SICOMP ‘96)
exhibited a protocol that is zero knowledge under the GMR definition, but for which the
sequential composition of 2 copies is not zero knowledge.

2. If we relax the GMR definition to only require that the simulation is indistinguishable
from the verifier’s view by uniform polynomial-time distinguishers, with no auxiliary in-
put beyond the statement being proven, then again zero knowledge is not closed under
sequential composition of 2 copies.

3. We show that auxiliary-input zero knowledge with efficient provers is not closed under par-
allel composition of 2 copies under the assumption that there exist nontrivial languages in
NP with uniquely determined, secret feature functions. This result generalizes the previ-
ous work by Feige and Shamir (STOC ‘90), who gave similar results under the assumption
that (a) the discrete logarithm problem is hard, or (b) UP 6⊆ BPP and one-way functions
exist. It also implies a new result under a seemingly incomparable assumption that there
exist a secure key agreement protocol in which it is easy to recognize valid transcripts.

∗These results first appeared in the first author’s undergraduate thesis [5] and an extended abstract will appear
in TCC 2010 [6].
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1 Introduction

Composition has been one of the most active subjects of research on zero-knowledge proofs. The
goal is to understand whether the zero-knowledge property is preserved when a zero-knowledge
proof is repeated many times. The answers vary depending on the variant of zero knowledge in
consideration and the form of composition (e.g. sequential, parallel, or concurrent). The study of
composition was first aimed at reducing the soundness error of basic constructions of zero-knowledge
proofs (via sequential or parallel composition), but was later also motivated by considering net-
worked environments in which an adversary might be able to open several instances of a protocol
(even concurrently).

Soon after Goldwasser, Micali, and Rackoff introduced the concept of zero-knowledge proofs [20],
it was realized that composability is a subtle issue. In particular, this motivated a strengthening
of the GMR definition, known as auxiliary-input zero knowledge [21, 19, 9], which was shown to be
closed under sequential composition [19]. The need for this stronger definition was subsequently
justified by a result of Goldreich and Krawczyk [16], who showed that the original GMR definition
is not closed under sequential composition. Specifically, they exhibited a protocol that is plain zero
knowledge when executed once, but fails to be zero knowledge when executed twice sequentially.

The starting point for our work is the realization that the Goldreich–Krawczyk protocol is
not an entirely satisfactory counterexample, because the prover strategy is inefficient (i.e. super-
polynomial time). Most cryptographic applications of zero-knowledge proofs require a prover strat-
egy that can be implemented efficiently given an appropriate auxiliary input (e.g. NP witness).
Prover efficiency can intuitively have an impact on the composability of zero-knowledge proofs,
because an adversarial verifier may be able to use the extra computational power of one prover
copy to “break” the zero-knowledge property of another copy. Indeed, known positive results on
the parallel and concurrent composability of witness-indistinguishable proofs (a weaker variant of
zero-knowledge proofs) rely on prover efficiency [9] .

Thus, we revisit the sequential composability of plain zero knowledge, but restricted to efficient
provers. Our first result is positive, and shows that such proofs are closed under any constant
number of sequential compositions (in contrast to the Goldreich–Krawczyk result with unbounded
provers). The case of a superconstant or polynomial number of compositions remains an interesting
open question. This positive result refers to the standard formulation of plain zero knowledge,
where the simulation and the verifier’s view are required to be indistinguishable by nonuniform
polynomial-time distinguishers (or distinguishers that are given the prover’s auxiliary input in
addition to the statement being proven).

We then consider the case where the distinguishers are uniform probabilistic polynomial-time
algorithms, whose only additional input is the statement being proven. In this case, we obtain a
negative result analogous to the one of Goldreich and Krawczyk, showing that zero knowledge is
not closed under sequential composition of even 2 copies (assuming that NP 6⊆ BPP). Informally,
these two results say that plain zero knowledge is closed under a constant number of sequential
compositions if and only if the distinguishers are at least a powerful as the prover.

We also examine the parallel composability of auxiliary-input zero knowledge. Here, too, Gol-
dreich and Krawczyk [16] gave a negative result that utilizes an inefficient prover. Feige and
Shamir [9], however, gave a negative result with an efficient prover, under the assumption that the
discrete logarithm is hard, or more generally under the assumptions that UP 6⊆ BPP and one-way
functions exist. We are interested in whether the complexity assumption used by Feige and Shamir
can be weakened. To this end, we provide a general negative result (assuming the existence of
nontrivial languages in NP with uniquely determined, secret feature functions as introduced by
Haitner, Rosen, and Shaltiel [22]) and observe that this implies both the previous work and a new
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construction under a seemingly incomparable assumption, namely that there exists a key agreement
protocol (in which it is easy to recognize valid transcripts).

2 Definitions and Preliminaries

2.1 Interactive Proofs

Given two interactive Turing machines – a prover P and a verifier V – we consider two types of
interactive protocols: proofs of language membership (interactive proofs) and proofs of knowledge.
In each case, both parties receive a common input x, and P is trying to convince V that x ∈ L for
some language L. We will allow P to have an extra “auxiliary input” or “witness” y. We use the
notation (P, V ) to denote an interactive protocol and the notation 〈P (x, y), V (x)〉 to denote the
verifier V ’s view of that protocol with inputs (x, y) and x respectively. The choices for y will be
given by a relation of the following kind:

Definition 2.1 (Poly-balanced Relation). A binary relation R is poly-balanced if there exists a
polynomial p such that for all (x, y) ∈ R, |y| ≤ p(|x|). The language generated by such a relation
is denoted LR = {x : (x, y) ∈ R}.

Observe that we don’t require R to be polynomial-time verifiable, so every language L is gen-
erated by such a relation, for example the relation R = {(x, y) : |y| = |x| and x ∈ L}.

Definition 2.2 (Interactive Proof). We say that an interactive protocol (P, V ) is an interactive
proof system for a language L if there exists a poly-balanced relation R such that L = LR and the
following properties hold:

• (Verifier Efficiency): The verifier V runs in time at most poly(|x|) on input x.

• (Completeness): If (x, y) ∈ R then the verifier V (x) accepts with probability 1 after interact-
ing with the prover P (x, y) on common input x and prover auxiliary input y.

• (Soundness): There exists a function s(n) ≤ 1 − 1/poly(n) (called the soundness error) for
which it holds that for all x /∈ L and for all prover strategies P ∗, the verifier V (x) accepts with
probability at most s(|x|) after interacting with P ∗ on common input x and prover auxiliary
input y.

Definition 2.3 (Proof of Knowledge). Let R be a poly-balanced relation. Given an interactive
protocol (P, V ), we let p(x, y, r) be the probability that V accepts on common input x when y is
P ’s auxiliary input and r is the random input generated by P ’s random coin flips. Let Px,y,r be the
function such that Px,y,r(m) is the message sent by P after receiving messages m. An interactive
protocol (P (x, y), V (x)) is an interactive proof of knowledge for the relation R if the following three
properties hold:

• (Verifier Efficiency): The verifier V runs in time at most poly(|x|) on input x.

• (Completeness): If (x, y) ∈ R, then V accepts after interacting with P on common input x.

• (Extraction): There exists a function s(n) ≤ 1 − 1/poly(n) (called the soundness error), a
polynomial q, and a probabilistic oracle machine K such that for every x, y, r ∈ {0, 1}∗, K
satisfies the following condition: if p(x, y, r) > s(|x|) then on input x and with access to
oracle Px,y,r machine K outputs w such that (x,w) ∈ R within an expected number of steps
bounded by q(|x|)/(p(x, y, r)− s(|x|)).
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Observe that extraction implies soundness, so a proof of knowledge for R is also an interactive
proof for LR.

Although the above definitions require a polynomial-time verifier, neither places any restriction
on the computational power of the prover P . In keeping with the standard model of “realistic”
computation, we sometimes prefer to limit the computational resources of both parties to polyno-
mial time. Specifically, we add the additional requirement that there exists a polynomial p such
that the prover P (x, y) runs in time p(|x|, |y|) where x is the common input and y is the prover’s
auxiliary input. We refer to such protocols as efficient or efficient-prover proofs.

2.2 Zero Knowledge

In keeping with the literature, we define zero knowledge in terms of the indistinguishability of the
output distributions.

Definition 2.4 (Uniform/Nonuniform Indistinguishability). Two ensembles of probability distribu-
tions {Π1(x)}x∈S and {Π2(x)}x∈S are uniformly (resp. nonuniformly) indistinguishable if for every
uniform (resp. nonuniform) probabilistic polynomial-time algorithm D, there exists a negligible
function µ such that for every x ∈ S,∣∣∣Pr[D(1|x|,Π1(x)) = 1]− Pr[D(1|x|,Π2(x)) = 1]

∣∣∣ ≤ µ(|x|),

where the probability is taken over the samples of Π1(x) and Π2(x) and the coin tosses of D.

Often, definitions of computational indistinguishability give the distinguisher the index x (not
just its length). This makes no difference for nonuniform distinguishers – since they can have x
hardwired in – but it does matter for uniform distinguishers. Indeed, we will see that zero-knowledge
proofs demonstrate different properties under composition depending on how much information the
distinguisher is given about the inputs.

Also, uniform indistinguishability is usually not defined with a universal quantifier over x ∈ S,
but instead with respect to all polynomial-time samplable distributions on x ∈ S (e.g. [2][12]). We
use the above definition for simplicity, but our results also extend to the usual definition.

For the purposes of this paper, we consider two different definitions of zero knowledge. The
first, which has primarily been of interest for historical reasons, is the one originally introduced by
Goldwasser, Micali, and Rackoff [20]:

Definition 2.5 (Plain Zero Knowledge). An interactive proof system (P, V ) for a language L =
LR is plain zero knowledge (with respect to nonuniform distinguishers) if for all probabilistic
polynomial-time machines V ∗, there exists a probabilistic polynomial-time algorithm MV ∗ that
on input x produces an output probability distribution {MV ∗(x)} such that {MV ∗(x)}(x,y)∈R and
{〈P (x, y), V ∗(x)〉}(x,y)∈R are nonuniformly indistinguishable.

As is standard, the above definition refers to nonuniform distinguishers (which can have x, y
and any additional information depending on x, y hardwired in as nonuniform advice). However,
it is also natural to consider uniform distinguishers. In this setting, it is important to differentiate
between the case where the distinguisher is only given the single verifier input x and the case where
the distinguisher is given both x and the prover’s auxiliary input y.

Definition 2.6. An interactive proof system (P, V ) for a language L = LR is plain zero knowledge
with respect to V -uniform distinguishers if for all probabilistic polynomial-time machines V ∗, there
exists a probabilistic polynomial-time algorithm MV ∗ that on input x produces an output proba-
bility distribution {MV ∗(x)} such that {(x,MV ∗(x))}(x,y)∈R and {(x, 〈P (x, y), V ∗(x)〉)}(x,y)∈R are
uniformly indistinguishable.
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Definition 2.7. An interactive proof system (P, V ) for a language L = LR is plain zero knowledge
with respect to P -uniform distinguishers if for all probabilistic polynomial-time machines V ∗, there
exists a probabilistic polynomial-time algorithm MV ∗ that on input x produces an output proba-
bility distribution {MV ∗(x)} such that {(x, y,MV ∗(x))}(x,y)∈R and {(x, y, 〈P (x, y), V ∗(x)〉)}(x,y)∈R

are uniformly indistinguishable.

The next definition of zero knowledge that we will consider is the more standard definition
which incorporates an auxiliary input for the verifier.

Definition 2.8 (Auxiliary-Input Zero Knowledge). An interactive proof system (P, V ) for a lan-
guage L is auxiliary-input zero knowledge if for every probabilistic polynomial-time machine V ∗

and every polynomial p there exists a probabilistic polynomial-time machine MV ∗ such that the
probability ensembles {〈P (x, y), V ∗(x, z)〉}(x,y)∈R,z∈{0,1}p(|x|) and {MV ∗(x, z)}(x,y)∈R,z∈{0,1}p(|x|) are
nonuniformly indistinguishable.

Observe that although this last definition is given only in terms of nonuniform indistinguishabil-
ity, this is actually equivalent to requiring only uniform indistinguishability; any nonuniform advice
used by the distinguisher can instead be incorporated into the verifier’s auxiliary input z.

2.3 Composition

In this section, we explicitly state the definitions of sequential and parallel composition that will
be used throughout this paper. These definitions can be applied to any of the definitions of zero
knowledge given in the previous section.

Definition 2.9. Given an interactive proof system (P, V ) and a polynomial t(n), we consider the
t(n)-fold sequential composition of this system to be the interactive system consisting of t(n) copies
of the proof executed in sequence. The ith copy of the protocol is initialized after the (i− 1)th copy
has concluded. All copies of the protocol are initialized with the same inputs.

We can extend our notion of zero knowledge to this setting in the natural way.

Definition 2.10. An interactive proof (P, V ) for the language L is sequential zero knowledge if for
all polynomials t(n), the t(n)-fold sequential composition of (P, V ) is a zero knowledge proof for L.

Note that although the verifiers in the different proof copies may be distinct entities and may in
fact be honest, this definition implicitly assumes the worst case in which a single adversary controls
all verifier copies. That is, it considers a sequential adversary (verifier) to be an interactive Turing
machine V ∗ that is allowed to interact with t(n) independent copies of P (all on common input x)
in sequence.

Our definition of parallel composition is analogous to the above definition:

Definition 2.11. Given an interactive proof system (P, V ) and a polynomial t(n), we consider the
t(n)-fold parallel composition of this system to be the interactive system consisting of t(n) copies
of the proof executed in parallel. Each message in the ith round of a copy of the protocol must be
sent before any message from the (i+ 1)th round. All copies of the protocol are initialized with the
same inputs.

We can again extend our notion of zero knowledge to this setting:

Definition 2.12. An interactive proof (P, V ) for the language L is parallel zero knowledge if for
all polynomials t(n) the t(n)-fold parallel composition of (P, V ) is a zero-knowledge proof for L.

Thus a parallel adversary (verifier) is an interactive Turing machine V ∗ that is allowed to
interact with t(n) independent copies of P (all on common input x) in parallel. That is the ith

message in each copy is sent before the (i+ 1)th message of any copy of the protocol.
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3 Sequential Zero Knowledge

3.1 Previous Results

In the area of sequential zero knowledge, there are two major results. The first is a negative result
concerning the composition of plain zero-knowledge proofs.

Theorem 3.1 (Goldreich and Krawczyk [16]). There exists a plain zero-knowledge proof (with re-
spect to nonuniform distinguishers) whose 2-fold sequential composition is not plain zero-knowledge.

The second significant result to emerge from the area concerns the composition of auxiliary-
input zero-knowledge proofs. In this case it is possible to show that the zero-knowledge property
is retained under sequential composition.

Theorem 3.2 (Goldreich and Oren [19]). If (P, V ) is auxiliary-input zero knowledge, then (P, V )
is auxiliary-input sequential zero knowledge.

These two results provide a context for our new results on sequential composition.

3.2 New Results

While Theorem 3.1 demonstrates that the original definition of zero knowledge is not closed under
sequential composition, it relies on the fact that the prover can be computationally unbounded.
In this section, we address the question: what happens when you compose efficient-prover plain
zero-knowledge proofs? We obtain two results that partially characterize this behavior.

First we show that the Goldreich and Krawczyk result (Theorem 3.1) cannot be extended to
efficient-prover plain zero-knowledge proofs. Indeed, we show that such proofs are closed under a
constant number of compositions.

Theorem 3.3. If (P, V ) is an efficient-prover plain zero-knowledge proof system with respect to
nonuniform (resp., P -uniform) distinguishers then for every constant k, the k-fold sequential com-
position of (P, V ) is also plain zero knowledge w.r.t. nonuniform (resp., P -uniform) distinguishers.

We leave the case of a super-constant number of compositions as an intriguing open problem.
Next we consider the case of V -uniform distinguishers, and we show that such protocols are not

closed under 2-fold sequential composition with efficient provers.

Theorem 3.4. If NP * BPP then there exists an efficient-prover plain zero-knowledge proof
with respect to V -uniform distinguishers whose 2-fold composition is not plain zero knowledge with
respect to V -uniform distinguishers.

Informally, Theorems 3.3 and 3.4 say that plain zero knowledge is closed under a constant
number of sequential compositions if and only if the distinguishers are at least as powerful as P .

3.2.1 Proof of Theorem 3.3.

We now prove that efficient-prover plain zero-knowledge is closed under O(1)-fold sequential com-
position.

Proof. Let (Pk, Vk) denote the sequential composition of k copies of (P, V ). We prove by induc-
tion on k that (Pk, Vk) is plain zero knowledge with respect to nonuniform (resp., P -uniform)
distinguishers.
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(P1, V1) is zero knowledge by assumption.
Assume for induction that (Pk−1, Vk−1) is zero knowledge, and consider the interactive protocol

(Pk, Vk). Let V ∗k be some sequential verifier strategy for interacting with Pk, and let V ∗k−1 denote
the sequential verifier that emulates V ∗k ’s interactions with the first k − 1 copies of the the proof
system (P, V ) and then halts. Since (Pk−1, Vk−1) is zero knowledge, there exists a simulator Mk−1

that successfully simulates V ∗k−1.
Define H∗k to be the “hybrid” verifier strategy (for interaction with P ) that consists of running

the simulator Mk−1 to obtain a simulated view v of the first k − 1 interactions, and then emulates
V ∗k (starting from the simulated view v) in the kth interaction. Since (P, V ) is plain zero knowledge,
there exists a polynomial-time simulator Mk for this verifier strategy.

We now show that Mk is also a valid simulator for (Pk, V
∗
k ). Since by induction (Pk−1, Vk−1) is

plain zero knowledge versus nonuniform (resp., P -uniform) distinguishers, the ensembles Π1(x, y) =
(x, y, 〈Pk−1(x, y), V ∗k−1(x)〉) and Π2(x, y) = (x, y,Mk−1(x)) are nonuniformly (resp., uniformly) in-
distinguishable when (x, y) ∈ R. Consider the function f(x, y, v) = (x, y, v′) that emulates V ∗k
starting from view v in one more interaction with P (y) to obtain view v′. Since f is polynomial-
time computable, we have that f(Π1(x, y)) and f(Π2(x, y)) are also nonuniformly (resp., uniformly)
indistinguishable. Observe that f(Π1(x, y)) =
(x, y, 〈Pk(x, y), V ∗k (x)〉) and f(Π2(x, y)) = (x, y,Mk(x)) thereforeMk is a valid simulator for (Pk, V

∗
k )

and hence (Pk, Vk) is plain zero knowledge with respect to nonuniform (resp., P -uniform) distin-
guishers.

In this proof, we implicitly rely on the fact that the number of copies k is a constant. It is
possible that the running time of the simulation is Θ(ng(k)) for some growing function g, and hence
super-polynomial for nonconstant k.

Note that this result doesn’t conflict with either Theorem 3.1 (in which the prover was allowed
to use exponential time and was therefore able to distinguish between a simulated interaction and
a real interaction) or Theorem 3.4 (in which the prover is polynomial time but the distributions
are only indistinguishable to a V -uniform distinguisher, so the prover was still able to distinguish
between a simulated interaction and a real interaction). Instead, it demonstrates that when neither
party has more computational resources than the distinguisher, it is possible to prove a sequential
closure result for plain zero knowledge, albeit restricted to a constant number of compositions.

3.2.2 Proof of Theorem 3.4.

We now prove Theorem 3.4, showing that plain zero knowledge with respect to V -uniform distin-
guishers is not closed under sequential composition. Our proof of Theorem 3.4 is a variant of the
Goldreich-Krawczyk [16] proof of Theorem 3.1, so we be begin by reviewing their construction.

Overview of the Goldreich-Krawczyk Construction [16]. In the proof of Theorem 3.1, the
key to constructing a zero-knowledge protocol that breaks under sequential composition lies in
taking advantage of the difference in computational power between the unbounded prover and the
polynomial-time verifier. The proof requires the notion of an evasive pseudorandom ensemble. This
is simply a collection of sets Si ⊆ {0, 1}p(i) such that each set is pseudorandom and no polynomial-
time algorithm can generate an element of Si with non-negligible probability. The existence of such
ensembles was proven by Goldreich and Krawczyk in [17]. Using this, Goldreich and Krawczyk [16]
construct a protocol such that in the first sequential copy, the verifier learns some element s ∈ S|x|.
In the second iteration, the verifier uses this s (whose membership in S|x| can be confirmed by the
prover) to extract information from P . A polynomial-time prover would be unable to generate or

6



verify s ∈ S|x|, therefore the result inherently relies on the super-polynomial time allotted to the
prover.

Overview of our Construction. As in the Goldreich-Krawczyk construction, we take advantage
of the difference in computational power between the two parties. However, since both are required
to be polynomial-time machines, the only advantage that the prover has over the verifier is in
the amount of nonuniform input each machine receives. The prover is allowed poly(|x|) bits of
auxiliary input y whereas the verifier receives only the |x| bits from the common input x. In order
to take advantage of this difference, we define efficient bounded-nonuniform evasive pseudorandom
ensembles. Using the newly defined ensembles, we construct an analogous protocol; in the first
iteration, the verifier learns some element of an efficient bounded-nonuniform evasive pseudorandom
ensemble, and in the second it uses this information to extract otherwise unobtainable information
from P .

Definition 3.5. Let q be a polynomial and let S = {S1, S2, . . . } be a sequence of (non-empty) sets
such that each Sn ⊆ {0, 1}n. We say that S is a efficient q(n)-nonuniform evasive pseudorandom
ensemble if the following three properties hold:

(1) For all probabilistic polynomial-time machines A with at most q(n) bits of nonuniformity, Sn

is indistinguishable from the uniform distribution on strings of length n. That is, there exists
a negligible function ε such that for all sufficiently large n,∣∣∣∣ Pr

x∈Sn

[A(x) = 1]− Pr
x∈Un

[A(x) = 1]
∣∣∣∣ ≤ ε(n).

(2) For all probabilistic polynomial-time machines B with at most q(n) bits of nonuniformity, it
is infeasible for B to generate any element of Sn except with negligible probability. That is,
there exists a negligible function ε such that for all sufficiently large n,

Pr
r∈{0,1}q(n)

[B(x, r) ∈ Sn] ≤ ε(n).

(3) There exists a polynomial p(n) and a sequence of strings {πn}n∈N of length |πn| = p(n) such
that:

(a) There exists a probabilistic polynomial-time machine D such that for all n ∈ N and
x ∈ {0, 1}n, D(πn, x) = 1 if x ∈ Sn and D(πn, x) = 0 else.

(b) There exists an expected probabilistic polynomial-time machine E such that for all n
E(πn) is a uniformly random element of Sn.

That is there exist efficient algorithms with polynomial-length advice for checking membership
in the ensemble and for choosing an element uniformly at random.

This definition is similar in spirit to the notion of an evasive pseudorandom ensemble used by
Goldreich and Krawczyk in the proof of Theorem 3.1. However, we add the additional requirement
that a polynomial-time machine with an appropriate advice string πn can identify and generate
elements of the ensemble. In order for this to be possible, we relax the pseudorandomness and
evasiveness requirements to only hold with respect to distinguishers with bounded nonuniformity
rather than with respect to nonuniform distinguishers.

The introduction of this definition begs the question of whether or not such ensembles exist.
Fortunately it turns out that they do.

7



Theorem 3.6. There exists an efficient n/4-nonuniform evasive pseudorandom ensemble.

The proof of this theorem is in Appendix A. It shows that if we select a hash function hn :
{0, 1}n → {0, 1}5n/16 from an appropriate pairwise independent family then with high probability
Sn = h−1

n (05n/16) is an n/4-nonuniform evasive pseudorandom set. The pseudorandomness and
evasiveness conditions (items (1) and (2)) are obtained by using pairwise independence and taking
a union bound over all algorithms with n/4 bits of nonuniformity. The efficiency condition (item (3))
is obtained by taking hn to be from a standard family (e.g., hn(x) = the first 5n/16 bits of a·x+b)
and taking πn to be the descriptor of hn (e.g., (a, b)).

We use this result to demonstrate that efficient-prover plain zero-knowledge proofs with respect
to V -uniform distinguishers are not closed under sequential composition. The construction is
analogous to the one by Goldreich and Krawczyk.

Proof. Let S1, S2, . . . be an efficient n/4-nonuniform evasive pseudorandom ensemble (the existence
of which is guaranteed by Theorem 3.6) and let π1, π2, . . . be the sequence of polynomial-length
strings that enable testing membership in and sampling random elements of the Sn’s.

We now construct an interactive-proof protocol (P, V ) for the trivial language L = {0, 1}∗.
First we define the relation R which will specify the possible auxiliary inputs for P , specifically
R = {(x, (π4|x|, w)) : |w| ≤ |x|}. Notice that LR = L. The string w plays no role in the relation;
we will use it as “secret” information that the verifier can learn from two sequential executions.

Let x be the common input for P and V , let n = |x|, and let (π4n, w) be P ’s auxiliary input.
The verifier V begins by sending to the prover a random string s of length 4n. The prover P checks
whether s ∈ S4n (the (4n)th set in the sequence). If this is the case (i.e., s ∈ S4n) then P sends to
V the secret value w. Otherwise, P sends to V a string s0 randomly selected from S4n. V then
always accepts.

Step P (x, π4n ◦ w) V (x)
1 ← s ∈R {0, 1}4n

2 if s ∈ S4n : c = w
else c ∈R S4n

c →

Figure 1: A plain zero-knowledge proof with respect to V -uniform distinguishers.

Unlike the prover in the Goldreich-Krawczyk protocol, this prover runs in polynomial time given
P ’s witness (π4n, w). The prover need only check if an element is in S4n and produce a uniformly
random element of S4n; the existence of efficient algorithms for both is guaranteed by Property (3)
of the definition of an efficient n/4-nonuniform evasive pseudorandom ensemble.

On one hand, the protocol is zero knowledge (when executed once). To show this, we present
for any verifier V ∗, a polynomial-time simulator MV ∗ that can simulate the conversations between
V ∗ and the prover P . There is only one prover message that needs to be simulated, namely Step
2. P sends the value of w in case that the string s sent by the verifier in Step 1 belongs to the set
S4n, and a randomly selected element of S4n otherwise. By Property (2) of Definition 3.5, there
is only a negligible probability that the first case holds. Indeed, no probabilistic polynomial-time
machine (in our case, the verifier V ) with n bits of nonuniformity (namely the input x) can find a
string s ∈ S4n, except with negligible probability. Therefore, the simulator can succeed by always
simulating the second possibility, i.e. sending a random element c from S4n. This step is simulated
by randomly choosing c from {0, 1}4n rather than from S4n. By Property (1) of Definition 3.5, a
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machine with n bits of nonuniform input (namely the V -uniform distinguisher with input x) cannot
distinguish such a string from one chosen from S4n.

On the other hand, this protocol fails to remain zero knowledge when composed with itself twice
in sequence. We stress that the same efficient n/4-nonuniform evasive pseudorandom ensemble is
used in all the executions of the protocol. Therefore, the string c, obtained by a verifier in the first
execution of the protocol, enables him to deviate from the protocol during a second execution in
order to obtain the value of w. Specifically, consider the verifier strategy V ∗ that behaves correctly
in the first iteration of the protocol, but in the first step of the second iteration sends the string
c obtained from the previous iteration instead of a random element of {0, 1}4n. Since c ∈ S4n, V ∗

now learns w which, by assumption, he could not calculate (or simulate) on its own.
We now use the fact that NP * BPP to show that any efficient simulator MV ∗ for this

strategy V ∗ will produce an output that is distinguishable from the verifier’s view by V -uniform
distinguishers. Define D(x, t) to output 1 if the transcript contains a message that is a satisfying
assignment to x (when interpreted as a circuit). Thus for every satisfiable circuit x and satisfying
assignment w Pr[D(x, 〈P (π4n, w), V ∗〉) = 1] = 1. Hence if MV ∗ were a good simulator with respect
to V -uniform distinguishers, then Pr[D(x,MV ∗(x)) = 1] ≥ 1

2 , i.e. MV ∗ finds a satisfying assignment
to x with probability at least 1/2. This contradicts the assumption that NP * BPP, therefore
there is no simulator for V ∗, and hence the 2-fold sequential composition of (P, V ) is not zero
knowledge with respect to V -uniform distinguishers.

4 Parallel Zero Knowledge

4.1 Previous Results

There are two classic results that provide context for our new result concerning the parallel com-
position of efficient-prover zero-knowledge proof systems. In both cases, the result applies to
auxiliary-input (as well as plain) zero knowledge, and both results are negative.

The first result establishes the existence of non-parallelizable zero-knowledge proofs independent
of any complexity assumptions.

Theorem 4.1 (Goldreich and Krawczyk [16]). There exists an auxiliary-input zero knowledge proof
whose 2-fold parallel composition is not auxiliary-input zero knowledge (or even plain zero knowledge
with respect to nonuniform distinguishers).

While this result demonstrates that zero knowledge is not closed under parallel composition
in general, the proof (like that of Theorem 3.1) inherently relies on the unbounded computational
power of the provers. Without the additional computational resources necessary to generate a
string and test membership in an evasive pseudorandom ensemble, the prover would be unable to
execute the defined protocol.

The second such result constructs an efficient-prover non-parallelizable zero-knowledge proof
based on a zero-knowledge proof of knowledge of the discrete-logarithm relation.

Theorem 4.2 (Feige and Shamir [9]). If the discrete logarithm assumption holds then there ex-
ists an efficient-prover auxiliary-input zero-knowledge proof whose 2-fold parallel composition is not
auxiliary-input zero knowledge (or even plain zero knowledge with respect to V -uniform distinguish-
ers).

This proof relies on the very specific assumption that the discrete logarithm problem is in-
tractable. However as Feige and Shamir observed [9], the only properties of this problem which
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are actually necessary are the fact that discrete logarithms are unique and that they have a zero-
knowledge proof of knowledge. It is therefore natural to consider generalizing the result to proofs of
language membership for any language L ∈ NP with exactly one witness for each element x ∈ L.
The class of such languages is known as UP. Moreover, if one-way functions exist, then every
problem in NP (and hence in UP) has a zero-knowledge proof of knowledge [18]. Thus:

Theorem 4.3 (Feige and Shamir [9]). If UP * BPP and one-way functions exist then there
exists an efficient-prover auxiliary-input zero-knowledge proof whose 2-fold parallel composition
is not auxiliary-input zero knowledge (or even plain zero knowledge with respect to V -uniform
distinguishers).

4.2 New Results

In this work, we demonstrate the existence of efficient-prover non-parallelizable zero-knowledge
proofs under more general complexity assumptions. Specifically, we recall the notion of a feature
function, first introduced by Haitner, Rosen, and Shaltiel [22], and show that such proofs can be
constructed for any language with a uniquely determined secret feature function. We then show that
this general result implies both the previous work by Feige and Shamir [9] and a new, incomparable
construction based on key agreement protocols.

Definition 4.4 (Feature Function). Let L ∈ NP and let m(n) denote the length of witnesses
w ∈ RL(x) for x ∈ L ∩ {0, 1}n. Let `(n) be an integer function. A feature function g : {0, 1}n ×
{0, 1}m(n) → {0, 1}`(n) is a polynomial-time computable function. We say that g is uniquely
determined if for all x ∈ L and for all w1, w2 ∈ RL(x), g(x,w1) = g(x,w2). We say that such a
function is secret if for every sufficiently large n and every nonuniform polynomial-time adversary
A there exists some negligible function ε such that,

| Pr
(x,w)∈RL

[A(x,w) = g(x,w)]− 2`(|x|)| ≤ ε(|x|).

Using this language, our main result on non-parallelizable zero knowledge proofs follows:

Theorem 4.5. If there exist languages L ∈ NP \ BPP with uniquely determined, secret feature
functions and one-way functions exist, then there exists an efficient-prover auxiliary-input zero-
knowledge proof whose 2-fold parallel composition is not auxiliary-input zero knowledge (or even
plain zero knowledge with respect to V -uniform distinguishers).

Proof. Let L ∈ NP \ BPP, and let RL = {(x,w) : w is a witness for x ∈ L} be an NP-relation
with a uniquely determined feature function. Since L ∈ NP, there exists an efficient-prover zero-
knowledge proof of knowledge (ZKPOK) of a witness w with error s(n) ≤ 2−m where m is again the
maximum length of a witness w[18]. If necessary, the required error can be achieved by sequential
composition of any initial ZKPOK.

We can use this proof as a subprotocol for constructing the following interactive proof for the
language L. V begins by sending the message c = 0 to P . If c = 0, then P uses the ZKPOK to
demonstrate that he knows a witness w ∈ RL(x). If c 6= 0, V demonstrates knowledge of w′ ∈ RL(x)
using the same ZKPOK. If the proof is successful and the transcript is valid (which can be checked
by P by our assumption of verifiable transcripts), then P shows in zero knowledge that he too
knows a witness w ∈ RL(x) and then sends the value of the feature function g(x,w) to V .

The protocol is summarized below.
Efficient-Prover Interactive Proof: The fact that this protocol is an interactive proof follows

directly from the fact that the subprotocol is (by assumption) a proof of knowledge. Completeness
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Step P (x,w) V (x, y)
1 ← c = 0
2 if c = 0: ZKPOK of w ∈ RL(x) →

← if c 6= 0 : ZKPOK of w′ ∈ RL(x)
3 if c 6= 0: ZKPOK of w ∈ RL(x) →
4 if c 6= 0, V ’s ZKPOK is successful: g(x,w) →

Figure 2: A efficient-prover non-parallelizable zero-knowledge proof for L.

and soundness follow from completeness and extraction properties of the ZKPOK that P conducts
in Step 2 or Step 3 respectively. Prover and verifier efficiency likewise follow from the respective
properties of the ZKPOK subprotocol.

Zero Knowledge: Given any verifier strategy V ∗ we can construct a simulator MV ∗ . MV ∗

begins by randomly choosing and fixing the coin tosses of the verifier V ∗, and then runs the verifier
V ∗ in order to obtain its first message c. If c = 0, MV ∗ then emulates the simulator for the ZKPOK
to simulate Step 2. It then does nothing for Step 3. If c 6= 0, then MV ∗ simulates the ZKPOK in
Step 2 by following the correct “verifier” protocol and running V ∗ in order to simulate the “prover”
half of the protocol. MV ∗ then simulates Step 3 using the simulator for the subprotocol. The
expected time of all of these steps is polynomial; this follows directly from the running time of the
simulators provided by the various subprotocols.

Finally, the simulator proceeds to Step 4. If c = 0 then there is no message sent in Step 4. If
c 6= 0 and the ZKPOK in Step 2 was unsuccessful, then there is again no message sent in Step
4. If c 6= 0 and the proof in Step 2 was successful, then MV ∗ runs the following two extraction
techniques in parallel, halting when one succeeds: First, it attempts to extract some w′ ∈ RL(x)
by employing the extractor K using V ∗’s strategy from Step 2 as an “oracle.” Second it attempts
to learn some witness w′ ∈ RL(x) by trying each of the 2m possible witnesses in sequence. If MV ∗

has successfully found a witness, it evaluates g(x,w′) and uses this to simulate Step 4.
The indistinguishability and expected polynomial running time of the simulation follow from

those of the ZKPOK simulator, except for the simulation of Step 4 in the case c 6= 0. To analyze this,
let p be the probability that V ∗ succeeds in the ZKPOK in Step 2. If p > 2 · 2−m, then there exists
such an extractor K that extracts a witness (j, rj) in expected time q(|x|)/(p − s(|x|). Since this
occurs with probability p, the expected time for this case is bounded by (p · q(|x|))/(p− s(|x|)) ≤
(p · q(|x|))/(p − 2−m) ≤ (p · q(|x|))/(p/2) ≤ 2q(|x|) = poly(|x|). If p ≤ 2 · 2m then the brute
force technique will find a witness in expected time p · 2m ≤ 2 = poly(|x|). Checking t’s validity
takes polynomial time by assumption, and determining k takes time Θ(|x|), therefore the entire
simulation runs in expected polynomial time.

The indistinguishability of the final step of this simulation relies on the fact that the feature
function g is uniquely determined, therefore g(x,w) = g(x,w′), so the simulation is polynomially
indistinguishable from V ∗’s view of the interactive protocol.

Parallel Execution: Consider now two executions, (P̃1, Ṽ ) and (P̃2, Ṽ ) in parallel. A cheating
verifier V ∗ can always extract some witness w ∈ {(1, r1), (2, r2)} from P̃1 and P̃2 using the following
strategy: in Step 1, V ∗ sends c = 0 to P̃1 and c = 1 to P̃2. Now V ∗ has to execute the protocol
(P, V ) twice: once as a verifier talking to the prover P̃1, and once as a prover talking to the verifier
P̃2. This he does by serving as an intermediary between P̃1 and P̃2, sending P̃1’s messages to P̃2,
and P̃2’s messages to P̃1. Now P̃2 willfully sends g(x,w) to Ṽ (which, by the secrecy property of
the feature function, Ṽ is incapable of computing on his own).
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This proof generalizes the previous work towards demonstrating the existence of non-parallelizable
efficient-prover zero-knowledge proofs.

Corollary 4.6 (Feige and Shamir [9]). If UP * BPP and one-way functions exist then there
exists an efficient-prover auxiliary-input zero-knowledge proof whose 2-fold parallel composition
is not auxiliary-input zero knowledge (or even plain zero knowledge with respect to V -uniform
distinguishers).

Proof. Let L ∈ UP ( BPP , and let g(x,w) = w. Since for all x ∈ L there exists exactly one
witness w ∈ RL(x), g is uniquely determined. Furthermore it is immediately clear that the secrecy
condition holds, therefore the result follows from Theorem 4.5.

Morevoer, our main parallel result is a non-trivial generalization of that previous work, that is
it implies the existence of such non-parallelizable protocols under an incomparable assumption: the
existence of verifiable key agreement protocols. Following the standard notion of key agreement,
we introduce the following definition.

Definition 4.7. A key agreement protocol is an efficient protocol between two parties P1, P2 with
the following four properties:

• Input: Both parties have common input 1` which is a security parameter written in unary.

• Output: The outputs of both parties are k-bit strings (for some k = poly(`)).

• Correctness: The parties have the same output with probability 1 (when they follow the
protocol). This common output is called the key.

• Secrecy: No probabilistic polynomial time Turing machine E given 1` and the transcript of
the protocol (messages between P1, P2) can distinguish with non-negligible advantage the key
from a uniformly distributed k-bit string. That is, {(1`, transcript(P1, P2), output(P1, P2))}1`:`∈N
is nonuniformly indistinguishable from {(1`, transcript(P1, P2), Uk)}1`:`∈N.

For technical reasons, we impose an additional technical condition.

Definition 4.8. Let (P1, P2) be a key agreement protocol. We say that a pair (i, r) ∈ {1, 2}×{0, 1}∗
is consistent with a transcript t of messages if the messages from Pi in t are what Pi would have
sent had its coin tosses been r and had it received the prior messages specified by t. We say that
t is valid if there exist r1, r2 such that t is consistent with both (1, r1) and (2, r2); that is, t occurs
with nonzero probability when the honest parties P1 and P2 interact. We say that (P1, P2) has
verifiable transcripts if there is a polynomial-time algorithm that can decide whether a transcript
t is valid given t and any pair (i, r) consistent with t.

We note that many existing key agreement protocols have verifiable transcripts, including the
Diffie-Hellman key exchange and the protocols constructed from any public-key encryption scheme
with verifiable public keys. The existence of secure key agreement protocols with verifiable tran-
scripts seems incomparable to the assumption that UP * BPP which was used in Theorem 4.3.

Corollary 4.9. If key agreement protocols with verifiable transcripts exist then there exists an
efficient-prover auxiliary-input zero-knowledge proof whose 2-fold parallel composition is not zero
knowledge.
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Proof. If such protocols exit, then one-way functions exist. It therefore suffices to demonstrate a
non-trivial NP language with a uniquely determined, secret feature function. Define a language

L = {t : t is a valid key-agreement transcript and ∃(i, ri) consistent with t}.

We claim that the function g that maps (t, (i, ri)) ∈ RL to the key k generated by that transcript
is a uniquely determined, secret feature function. g can be efficiently computed by using the coin
tosses ri and the messages of theothe player as recorded in the transcript t to follow the protocol
and generate a key k. Since t must be valid, such a key k is unique (the feature function is uniquely
determined) and the secrecy property follows from the secrecy property of any valid transcript for
the key agreement protocol. Therefore the result follows from Theorem 4.5.

5 Conclusions and Open Problems

We view our results as pointing out the significance of prover efficiency, as well as the power of
the distinguishers, in the composability of zero-knowledge proofs. Indeed, we have shown that
with prover efficiency, the original GMR definition enjoys a greater level of composability than
without. Nevertheless, the now-standard notion of auxiliary input zero knowledge still seems to
be the appropriate one for most purposes. In particular, we still do not know whether plain zero
knowledge is closed under a super-constant number of compositions. We also have not considered
the case that different statements are being proven in each of the copies, much less (sequential)
composition with arbitrary protocols. For these, it seems likely that auxiliary input zero knowledge,
or something similar, is necessary.

One way in which our negative result on sequential composition (of plain zero knowledge with
respect to V -uniform distinguishers, Theorem 3.4) can be improved is to provide an example where
the prover’s auxiliary inputs are defined by a relation that can be decided in polynomial time (in
contrast to our construction, where the prover’s auxiliary input contains the advice string π4n,
which may be hard to recognize).

For the parallel composition of auxiliary-input zero knowledge with efficient provers, it remains
open to determine whether a negative result can be proven under a more general assumption such
as the existence of one-way functions. Our method provide an intermediate generalization that
replaces the assumption UP 6⊆ BPP with the assumption that there is a a problem in NP for
which the witnesses have a “uniquely determined feature” [22] that is hard to compute. Our
construction complements that of Haitner, Rosen, and Shaltiel [22] — they consider the parallel
repetition of natural zero-knowledge proofs (such as 3-Coloring [18] or Hamiltonicity [7]), and argue
that “certain black-box techniques” cannot prove that a feature g(x) will remain hard to compute
by the verifier (on average). In contrast, we consider the parallel repetition of a contrived zero-
knowledge proof and show that a cheating verifier can always learn a certain hard-to-compute
feature g(x).
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A Construction of Pseudorandom Evasive Ensembles

Theorem A.1. There exists an efficient n/4-nonuniform evasive pseudorandom ensemble.

Definition A.2 (Pairwise Independent Hash Functions). A family (i.e. multiset) of functions
H = {h : [N ] → [M ]} is pairwise independent if for all x1 6= x2 ∈ [N ], when h ∈ H is a
function chosen uniformly at random from H, the random variables h(x1), h(x2) are independent
and uniformly distributed in [M ].

A standard construction of such families is the following:

Example A.3. Let n,m ∈ N such that n > m. Consider the hash family

Hn,m = {ha,b|m : {0, 1}n → {0, 1}m}a,b

where ha,b(x)|m is defined to be the first m bits of a ·x+ b where the arithmetic is done in the field
of 2n elements. Then Hn,m is a pairwise independent hash function.

Using such a family of hash functions it is possible to construct an efficient bounded-nonuniform
evasive pseudorandom ensemble. The proof uses the following two standard inequalities.

Lemma A.4 (Pairwise Independent Tail Inequality). Let X1 . . . Xk be pairwise independent random
variables taking values in the interval [0, 1], let X = (

∑
iXi)/k, and µ = E[X]. Then

Pr[|X − µ| ≥ ε] ≤ µ

kε2

Lemma A.5 (Markov Inequality). Let X be any random variable taking only non-negative values,
and let ε > 0. Then

Pr[X ≥ ε] ≤ E[X]
ε
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The proof of Theorem A.1 proceeds as follows. We begin by fixing a collection of pairwise
independent hash families Hn.m, where m = 5n/16 for each n ∈ N. We then establish three lemma,
each corresponding to one of the three properties required by efficient bounded-nonuniform evasive
pseudorandom ensembles. In Lemma A.6 we show that for sufficiently large n, a randomly chosen
function hn ∈ Hn,m has the property that with probability at least 3/4, no polynomial-time machine
with k ≤ n/4 bits of nonuniformity can non-negligibly distinguish between a random element of
Sn = {x : hn(x) = 0m} and the uniform distribution on {0, 1}n. In Lemma A.7 we prove a similar
result for the second property. Namely we show that for sufficiently large n and for a randomly
chosen function hn ∈ Hn,m with probability at least 3/4 no polynomial machine B can generate an
element of Sn = {x : hn(x) = 0m} with non-negligible probability.

Taken together, these two lemmas demonstrate that for sufficiently large n, there must exist
some hn ∈ Hn,m such that the first two properties hold for the corresponding set Sn. Lemma
A.8 then establishes that the third property also holds: a polynomial machine with poly(n) bits of
nonuniformity can both recognize and generate elements of Sn. This intuition is formalized in the
proof of Theorem A.1.

We now proceed to establish each of these three lemmas.

Lemma A.6. For all n, consider Hn,m to be the pairwise independent hash family described above
where m = 5n/16. Choose an element hn ∈ Hn,m uniformly at random and define Sn = {x ∈
{0, 1}n : hn(x) = 0m}. For sufficiently large n, with probability at least 3/4, Sn exhibits the
property that for all probabilistic polynomial-time machines A with k ≤ n/4 bits of nonuniformity,
Sn is indistinguishable from the uniform distribution on strings of length n. That is, there exists a
negligible function ε such that for all sufficiently large n,∣∣∣∣ Pr

x∈Sn

[A(x) = 1]− Pr
x∈Un

[A(x) = 1]
∣∣∣∣ ≤ ε(n).

Proof. Fix a probabilistic polynomial-time machine A : {0, 1}n → {0, 1} with k ≤ n/4 bits of
nonuniformity. Let Id(φ) denote the indicator function for the predicate φ, that is the function
with value 1 when φ is true and value 0 else. The probability that A outputs 1 on input x (chosen
uniformly from Sn) and random coin tosses r is given by:

Pr
x∈Sn,r

[A(x) = 1] =

∑
x∈Sn

Prr[A(x) = 1]
|Sn|

=

∑
x∈{0,1}n Id(x ∈ Sn) · Prr[A(x) = 1]∑

x∈{0,1}n Id(hn(x) = 0m)

=

∑
x∈{0,1}n Id(h(x) = 0m) · Prr[A(x) = 1]∑

x∈{0,1}n Id(hn(x) = 0m)

=
X1

X2

where X1 = 1
2n

∑
x∈{0,1}n Id(h(x) = 0m) · Prr[A(x) = 1] and X2 = 1

2n

∑
x∈{0,1}n Id(hn(x) = 0m).

Observe that each Xi is the average of 2n pairwise-independent random variables (over the
choice of hn), so with high probability its value is close to its expectation, where the expectations
are given by:

µ(X1) =
1

2m
Pr

x∈Un,r
[A(x) = 1]

µ(X2) =
1

2m
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More specifically, by Lemma A.4, with probability at least 1− 1/2nε2,

|Xi − µ(Xi)| < ε

.
We can combine these two inequalities to acquire upper and lower bounds for the probability

that A outputs 1. Namely with probability at least (1− 1/2nε2)2

µ(X1)− ε
µ(X2) + ε

≤ X1

X2
= Pr

x∈Sn

[A(x) = 1] ≤ µ(X1) + ε

µ(X2)− ε

By applying a Taylor series expansion, we observe that if |ε| < 1, then we can bound values of
this form using the following inequalities:

µ(X1)− ε
µ(X2) + ε

≥ µ(X1)− ε
µ(X2)

− 2(µ(X1)− ε)
µ(X2)2

· ε ≥ µ(X1)
µ(X2)

− 2(µ(X1) + ε) + µ(X2)
µ(X2)2

· ε

µ(X1) + ε

µ(X2)− ε
≤ µ(X1) + ε

µ(X2)
+

2(µ(X1) + ε)
µ(X2)2

· ε ≤ µ(X1)
µ(X2)

+
2(µ(X1) + ε) + µ(X2)

µ(X2)2
· ε

Therefore if 0 < ε < 1,then with probability at least 1− 2/2nε2∣∣∣∣ Pr
x∈Sn

[A(x) = 1]− µ(X1)
µ(X2)

∣∣∣∣ ≤ 2(µ(X1) + ε) + µ(X2)
µ(X2)2

· ε

Observe that the probability that A outputs 1 on input x chosen uniformly from {0, 1}n is
simply µ(X1)/µ(X2), therefore with probability at least 1− 2/2nε2∣∣∣∣ Pr

x∈Sn

[A(x) = 1]− Pr
x∈{0,1}n

[A(x) = 1]
∣∣∣∣ ≤ 2(µ(X1) + ε) + µ(X2)

µ(X2)2
· ε ≤ 3ε2m = 2−Ω(n)

We observe that the number of functions A that can be expressed by a Turing machine
of description length k1 ≤ log(n/4) with nonuniform advice of length k2 ≤ n/4 is at most
2log(n/4)+n/4 = (n/4)2n/4. We can therefore take a union bound over the possible choices of A.
After applying the union bound, we observe that (for our chosen hn), the probability that any A
can distinguish between Sn and Un with advantage greater than 2−Ω(n) is at most

(n/4)2n/4 · 2
2nε2

≤ 1
2
.

For ε = 2−11n/32, this implies that for every probabilistic polynomial-time machine A with
k ≤ n/4 bits of nonuniform advice, A distinguishes between Sn and Un with negligible advantage
(for sufficiently large n).

Lemma A.7. For all n, consider Hn,m to be the pairwise independent hash family described above
where m = 5n/16 as in Lemma A.6. Choose an element hn ∈ Hn,m uniformly at random and
define Sn = {x ∈ {0, 1}n : hn(x) = 0m}. For sufficiently large n, with probability at least 3/4,
Sn exhibits the property that for all probabilistic polynomial-time machines B with k ≤ n/4 bits of
nonuniformity, it is infeasible for B to generate any element of Sn except with negligible probability.
That is, there exists a negligible function ε such that for all sufficiently large n,

Pr
r∈{0,1}q(n)

[B(x, r) ∈ Sn] ≤ ε(n).

.
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Proof. Fix a probabilistic polynomial-time machine B with k ≤ n/4 bits of nonuniformity.

ESn [Pr
r

[B(r) ∈ Sn]] = Er[Pr
Sn

[B(r) ∈ Sn]] = Er[Pr
hn

[hn(B(r)) = 0m]] =
1

2m

By Markov’s Inequality:

Pr
[
Pr
r

[B(x, r) ∈ Sn] ≥ ε
]
≤ ESn [Prr[B(r) ∈ Sn]]

ε
≤ 1

2mε

As in the proof of Lemma A.6, we need to consider at most (n/4)2n/4 possible machines B,
therefore by a union bound over the choice of B we get that:

Pr [∃B s.t. Prr[B(x, r) ∈ Sn] ≥ ε] ≤ n2n/4

25n/16ε
= O(n2−n/16ε−1)

If we let ε = 2−n/32 then we observe that for sufficiently large n, the probability (over the
choice of hn) that no probabilistic polynomial-time machine B with k ≤ n/4 bits of nonuniformity
generates an element of Sn with probability greater than ε is at least 3/4.

Lemma A.8. Let Hn,m be the pairwise independent hash family described above (with m = 5n/16).
Choose an element hn ∈ Hn,m uniformly at random and define the set Sn = {x ∈ {0, 1}n : hn(x) =
0m}. For all n there exists a string πn of length q(n) such that:

(a) There exists a probabilistic polynomial-time machine D such that D(πn, x) = 1 if x ∈ Sn and
D(πn, x) = 0 else.

(b) There exists a probabilistic expected polynomial-time machine E such that on input πn, E
returns a uniformly random element of Sn.

Proof. hn ∈ Hn,m therefore hn(x) = a · x + b. Define πn = a#b (i.e. πn is an encoding of the
coefficients of hn). This advice string has length q(n) = (2n+ 1).

• Part (a): We define a probabilistic Turing machine D that given inputs πn = a#b and x does
the following. It calculates ha,b(x) = a · x+ b. If the first m bits are all zero, the D outputs
1, else it outputs 0. D clearly runs in polynomial time as desired.

• Part (b): We define a probabilistic Turing machine E that given input πn = a#b does the
following.

If a = 0n, E begins by determining whether or not b = 0m. If so, it returns a randomly
chosen element of {0, 1}n = Sn. If a = 0n and b 6= 0m then Sn = ∅ so E simply halts.

If a 6= 0n, E chooses a string r of length n − m uniformly at random, determines the set
P of solutions to the equation ha,b(z) = 0m ◦ r, and returns an element chosen uniformly at
random from the set P .

For any z ∈ Sn, recall that by our definition of Sn, hn(z) = 0m ◦ s for some s ∈ {0, 1}n−m.
The probability that E returns a fixed z is therefore given by: Pr[r = s] · 1

|P | = 1
2n−m·|P | .

Since a 6= 0n then P = {(0m ◦ r− b) · a−1}. Since |P | does not depend on the choice of z, this
probability is independent of the choice of z, therefore E returns a uniformly random element
of Sn.

Having established these three intermediate results, the existence of n
4 -nonuniform efficiently-

evasive pseudorandom ensembles follows.
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Proof of Theorem A.1 Fix a polynomial p(n) and for all n, consider Hn,m to be the pairwise
independent hash family described above (with m = 5n/16).

Choose an element hn ∈ Hn,m uniformly at random and define the corresponding set Sn = {x ∈
{0, 1}n : hn(x) = 0m}. By Lemma A.6 with probability at least 3/4, Sn is indistinguishable from
Un from the point of view of any probabilistic polynomial-time machine A. Similarly by Lemma
A.7 with probability at least 3/4, no probabilistic polynomial time machine B can generate an
element of Sn. It is therefore clear that for all (sufficiently large) values of n there must exist some
hn ∈ Hn,m and a corresponding Sn such that both of the above properties hold.

For this Sn, by Lemma A.8 there exist probabilistic polynomial-time machines D and E as
required. The result follows immediately.
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